
A Study of Active Object Detection for
Composite Labelling

Connor Clarkson
868419

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Masters of Science

Department of Computer Science

Swansea University

November 20, 2020

Declaration
This work has not been previously accepted in substance for any degree and is not being con-

currently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1
This dissertation is the result of my own independent work/investigation, except where other-

wise stated. Other sources are acknowledged by giving explicit references. A bibliography is

appended.

Signed .. (candidate)

Date ..

Statement 2
I hereby give my consent for my dissertation, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside organisa-

tions.

Signed .. (candidate)

Date ..

Abstract

This project proposes an active learning framework on object detectors. We support any
imagery-based dataset and any object detector from TensorFlow’s Model zoom achieve. We
put special focus on steel defect detection and composite labelling. Due to steel production
having a continuous flow on steel needing to automatically be checked, we apply online learning
elements to our investigation. We explore various object detectors in this unique setting of
active-online learning.

3

Contents

1 Introduction 8
1.1 Context and Motivation . 8
1.2 Project Specification . 8
1.3 Objectives . 9
1.4 Contributions . 9
1.5 Outline . 10

2 Literature Review 11
2.1 Introduction . 11
2.2 Types of Learning . 12

2.2.1 Supervised Learning . 12
2.2.2 Unsupervised Learning . 13

2.3 Learning Techniques . 14
2.3.1 Transfer Learning . 14
2.3.2 Active Learning . 15
2.3.3 Online Learning . 16

2.4 Deep Learning . 18
2.4.1 Neural Networks . 19

2.4.1.1 The Perceptron and the Structure of Neural Networks 19
2.4.1.2 Activation Functions . 20
2.4.1.3 Softmax Function . 21
2.4.1.4 Backpropagation . 21
2.4.1.5 Regularization . 22

2.4.2 Convolutional Neural Networks . 23
2.4.2.1 Architectures . 26

2.5 The Challenges of Combining Deep Learning, Active Learning and Online Learning 29
2.6 Object Detection . 30

2.6.1 Two Stage Object Detectors . 32
2.6.2 One Stage Detectors . 33
2.6.3 mAP Metric for Object Detectors . 35
2.6.4 Advances Object Detectors . 37

2.7 Summary . 38

3 Responsibly Innovated Human Centric Desgin 40
3.1 Introduction . 40
3.2 History of Responsible Innovation and Human-Centric Design and Why it is Needed 40
3.3 Developing a Suitable Project Methodology . 41

4

4 Methodology 43
4.1 Introduction . 43
4.2 Framework Overview . 44
4.3 Labelling Application . 46
4.4 Object Detectors in the Labelling Application . 48
4.5 Summary . 50
4.6 Datasets . 50

5 Project Management 53
5.1 Introduction . 53
5.2 Project Development Methodology . 53
5.3 Schedule . 54
5.4 Risk Assessment . 56
5.5 Summary . 59

6 Evaluation 60
6.1 Introduction . 60
6.2 Online and Active Learning Experiments . 60
6.3 Object Detector Experiments . 62

7 Conclusions and Future Work 64
7.1 Conclusions . 64
7.2 Future Work . 65

List of Figures

2.1 Linear Regression . 13
2.2 Transfer Learning and its Variants . 15
2.3 Taxonomy of Online Learning Techniques . 17
2.4 Venn Diagram of Deep Learning . 18
2.5 Single Layer Perceptron . 19
2.6 Generalization: The process of avoiding underfitting and overfitting to data . . . 22
2.7 The core design principles of Convolutional Neural Networks 24
2.8 Convolutional layer extracting features . 25
2.9 VGG16/19 Design . 26
2.10 ResNet Design and the Residual Block . 27
2.11 Utilising Batch Normalisation and Depthwise Convolutions in MobileNet 28
2.12 Model Structure in Object Detection Contexts 30
2.13 The RCNN Family Architectures . 32
2.14 Confusion Matrix . 35
2.15 Intersection Over Union (IOU) . 36
2.16 Illustration of a Single Hour Glass Module . 37

4.1 Project Methodology: Active Online Learning Framework 44
4.2 Project Methodology: Flowchart of Application 46
4.3 Project Methodology: Image Viewer . 47
4.4 Project Methodology: Labeller . 48
4.5 Keypoint Configuration of Existing Face Datasets 50
4.6 Initial Findings of Severstal Dataset . 51
4.7 Visualizing Defects . 51

5.1 Project Schedule . 55

6.1 Training Loss Over Active Learning Sessions . 60
6.2 Active Learning Experiments Over Two Models 61

6

List of Tables

2.1 Transfer Learning Criteria . 15
2.2 IoU Metric Criteria . 36
2.3 mAP Metrics . 37

6.1 Active Learning Experiment Results . 62
6.2 Object Detection Experiment Results . 63

7

Chapter 1

Introduction

Contents

1.1 Context and Motivation . 8

1.2 Project Specification . 8

1.3 Objectives . 9

1.4 Contributions . 9

1.5 Outline . 10

1.1 Context and Motivation

For this thesis, we developed an active learning framework with a focus on object detectors. For
this purpose we aim for detecting defects within steel but this framework can be used on any
imagery-based dataset. Some of the biggest advances within AI have come from deep learning
[1]. Since AlexNet winning the ImageNet competition [2], the main mentality and objective of
many deep learning researchers and petitioners are to use more data and parameters in achieving
complex tasks, which has resulted in models like OpenAI’s GPT-3 with 175 billion parameters
[3]. The hopeful goal of these models is to create them so large that they can be used on
any task within its domain. The approach has become the de facto way in object detection,
where we apply a transfer learning technique on one of these large models to a specific dataset.
Allowing us to utilise the knowledge of the domain, which saves time and boosts performance.
Two of the largest bottlenecks with these models - and generally within machine learning - is
data labelling due to large/complex data and the need to have high-quality annotations. Other
challenges such as a change in data distribution over time or even interpreting model outcomes
are becoming more problematic. Within this thesis, we combine advances in online learning -
where the model learns in real-time - with the advances of active learning to bring humans into
the loop of AI decision-making, to reduce the need to label all the data.

1.2 Project Specification

Within this project we will be using two datasets, ”Labelled Face Parts in the Wild” (LFPW)
[4] and ”Severstal: Steel Defect Detection” [5]. LFPW is a keypoint estimation dataset which
makes it useful for our composite label experiments where we want to predict faces as well
as the composite features of a face such as eyes and noses. Defects in steel often consists of
composite labels that make up the final defect. However, we were unable to find an open-source
steel dataset that consists of composite defects, so we choose to use the LFPW dataset for this

8

Chapter 1 1.3. Objectives

experiment. The steel dataset is still vital for experimentation on hard to spot defects and low
variance between classes of defects. The labels in these datasets are still useful to use even
though we have our labelling application, as we can remove human error in our experiments
and speeds up the process of experimenting. The experiments are dependent on previously
completed experiments, however in general we will explore:

• Inter-class performance of composite labels

• Object detector performance on small intraclass labels

• Object detection in an active learning setting

• Influx of a class becoming more common in an online learning setting

The application specification consists of creating dataset-specific profiles. Users can select any
number of images from the image viewer to then label. The labeller consists of 2 types of
brushes and any number of classes. Users can create, rename, or remove labels on the fly and
the configuration of the object detector is updated accordingly.

1.3 Objectives

To accomplish our project specification we aim to have computed the following objectives in
stages:
Stage 1 Labelling Application:

• Dataset-specific profiler.

• An image viewer to select images for labelling.

• A labeller with multiple brushes.

• Users should be able to add, remove, rename labels on the fly.

Stage 2 Adapt application for machine learning environment:

• Generate TFRecord for each training session.

• The configuration file of any object detector should be updated to any changes made by
the user.

• Object detectors should apply fine-tuning from the previous training session.

Stage 3 Experimentation:

• 1 and 2-stage object detector experiments; exploring composite labels and low intra-class
labels.

• Active and online learning experiments with a focus on the performance of object detec-
tors.

1.4 Contributions

• Active learning framework for object detectors with support for any imagery based dataset.

• Adaptable object detectors for changing or removing classes.

• Investigation in the use of object detectors in active and online learning settings.

• Investigation of composite labels and low intra-class labels such as in steel defects.

9

Chapter 1 1.5. Outline

1.5 Outline

The chapters of this dissertation are outlined as follows:

Chapter 2 Literature Review:

We introduce the background literature of the project and dissertation with the intro-
duction of neural networks and building towards deep learning. We end the chapter by
exploring relevant literature in object detection.

Chapter 3 Responsibly Innovated Human Centric Design:

In this chapter we introduce responsible innovation and human centric design.

Chapter 4 Methodology:

We introduce the methodology and the software deliverable for this project. This chapter
is split between our proposed labelling application and object detection.

Chapter 5 Project Management:

In this chapter we discuss the plan of the project and how it was planned.

Chapter 6 Evaluation:

We draw from our methodology and perform experiments to evaluate our deliverable .

Chapter 7 Conclusions and Future Work:

Finally we conclude the project and reflect back on the presented work and project in
general.

10

Chapter 2

Literature Review

Contents

2.1 Introduction . 11

2.2 Types of Learning . 12

2.2.1 Supervised Learning . 12

2.2.2 Unsupervised Learning . 13

2.3 Learning Techniques . 14

2.3.1 Transfer Learning . 14

2.3.2 Active Learning . 15

2.3.3 Online Learning . 16

2.4 Deep Learning . 18

2.4.1 Neural Networks . 19

2.4.2 Convolutional Neural Networks . 23

2.5 The Challenges of Combining Deep Learning, Active Learning and
Online Learning . 29

2.6 Object Detection . 30

2.6.1 Two Stage Object Detectors . 32

2.6.2 One Stage Detectors . 33

2.6.3 mAP Metric for Object Detectors . 35

2.6.4 Advances Object Detectors . 37

2.7 Summary . 38

2.1 Introduction

Since 2015 when Girshick et al proposed the first deep learning object detector to successfully
beat the state of the art metrics in PASCAL VOC dataset [6], object detection exploded in
popularity in a similar way to deep learning in 2012 with competitions like ImageNet. Current
object detectors rely heavily on large amounts of data and a tedious labelling process. This
process becomes even more of a challenge when objects have composite elements that also need
to be labelled, or inter-class variance is large. A common problem in many surface/texture
detection tasks. Learning scenarios like active learning hope to address some of these challenges
by only labelling samples that will have the greatest statistical inference on the object detectors,
as result there should less of a need to label a lot of data and reducing the amount of data needed
to train. Other challenges like when we need to train in real-time, due to deep learning following

11

Chapter 2 2.2. Types of Learning

a greedy data principle. In this chapter, we present the knowledge and literature that is required
for our experiments. We show the different types of learning and learning techniques used within
machine learning to the development of neural networks and deep learning. Finally, we show
some of the key developments in object detection and the process of how we compare such
detectors.

2.2 Types of Learning

Machine learning is the purpose of gaining new knowledge from a domain feature space by
learning the general patterns of that space. This experience is often in the form of historical
datasets. This idea drives the concept of data-driven approaches. The three main tasks of
machine learning are supervised, unsupervised and reinforcement learning. Each task differs in
the type of data they input, output, and the approach in learning from the dataset. The lines
between these tasks can get blurry as a result of domain-specific problems. In situations where
the practitioner wants to use supervised learning but has small to no data, they could attempt
to use semi/self-supervised learning. These hybrid tasks attempt to merge the main tasks in
some capacity. We can also apply common learning techniques to any of the tasks, however
applying these techniques are dependent on the problems being addressed. Multi-task, active,
online, transfer and ensemble learning roughly fall under learning techniques.

2.2.1 Supervised Learning

One of the three pilers of machine learning, supervised learning consists of a labelled training
set {(x1, y1), ..., (xN , yN)}. Where xi is a sample(or feature vector) and yi is the label (or
class) of the sample. A sample is a vector of features that we show to a model and the result
is a prediction of the label ŷi, generally defined as f(xi, θ) = xiθ

T . Where f(·) is our model
and θ are the weights. We then define some loss function L(θ) = 1

N

∑
i L(fθ(xi), yi), where we

measure how close the prediction ŷi was to yi and compute the sum of all measures calculated in
the training set. We learn over time by selecting a good θ that minimizes the loss L(θ). To find
a good θ we use one of a family of methods known as computational methods of optimization,
the most common being gradient descent [7, 8]:

θt+1 = θt − αt∇f(θt) (2.1)

Where αt is our gradient step value at timestamp t. The gradient step is scaler value that
defines how large a jump we make towards the local minimum. Notice that we use previous
θt to update θt + 1, thus we must have a starting θ0. Wolpert and Maccready prove that the
best way to learn in any combinatorial optimization algorithm is to use a random θ0 to allow
for expectation, the only exception to this general rule is to have weights specially designed
for a class of problems and we train for a subclass of problems(known as transfer learning
within the machine learning literature and the transfer of learning in psychological literature)
[9]. We continue to train until L(θ) converges or we use some other early stopping criteria is used.

Within supervised learning there is two categories of problems, known as regression and
classification. Regression is used to predict a continuous ŷi while classification is used when we
want to predict a discrete ŷi. The general form of regression is known as linear regression. In
regression we learn to make a line of best fit given our training data, then predict ŷi from our
test dataset by getting the value where our test sample crosses the line on the y axis.

ŷi = c+mxi (2.2)

12

Chapter 2 2.2. Types of Learning

where c is the y-intercept and m is the slope of the line. Thus we need to learn a good c and
m to get an accurate ŷi. A common loss function in regression to achieve this is means squared
error:

L(c,m) =
1

2N

N∑
i=1

((c+mxi)− yi)2 (2.3)

where N is the number of training samples. We then use gradient descent to minimise this loss
function (equation 2.1) If input samples have more than one feature than we replace (c+mxi)
in equation 2.3 with hθ(x) defined as:

hθ(xi) = θ0 + θ1x
1
i + ...+ θnx

N
i (2.4)

where xi is a our input sample vector of features x1i , x
2
i , ..., x

n
i , n is the number of features within

the sample vector, N is the number of input samples in the dataset, θ0 replaces c and finally
θ1...θn replaces m.

Figure 2.1: Illustration of linear regression where the orange line is the line of best fit, and the
blue line between the line of best fit and the samples is the error of that specific sample.

Logistic regression applies the principles of regression in a classification setting. In this
setting our ŷi is a binary value which is the numerical mapping of our label. We fit a sigmoid
line to our data:

hθ(x) =
1

1 + e−θT x
(2.5)

where x is a input sample vector and θ is our current weights. We define a new loss function
known as cross-entropy loss for our binary labels:

L(θ) = − 1

N

[
N∑
i=1

yi log hθ(xi) +
N∑
i=1

(1− yi)log(1− hθ(xi))

]
(2.6)

where the term
∑N

i=1 yi log hθ(xi) is loss if yi = 1 while the term
∑N

i=1(1 − yi)log(1 − hθ(xi))
is the loss if yi = 0 and N is the number of samples in the training dataset. The loss is being
computed by taking negative log of all probabilities of both y = 1 and y = 0. The result of the
loss function increases as the predictions ŷ moves away from their true labels y. Finally we use
gradient descent (equation 2.1) to minimise our new loss function.

2.2.2 Unsupervised Learning

In the context of unsupervised learning we do not provide any labels for each of our samples,
thus our training dataset is defined as {x1, ..., xN}, where N is the number of samples in the
set. This setting often uses the priori probability distribution of the dataset for the given

13

Chapter 2 2.3. Learning Techniques

unsupervised learning task. These tasks could include dimensionality reduction, cluster analysis
or association analysis. Within cluster analysis our aim is to group the data into clusters based
on the natural structure of the dataset given, kmeans is one such appouch. K-means gets its
name from k number of centroids and the mean position of a centroid given all data samples
within the associated cluster.

Algorithm 1: k-Means [10]

Result: Clusters of dataset
Step 1: Randomly initialize cluster centroids µ1, µ2, ..., µk in facture space
Step 2: while not converging do

Step 2.a:
foreach sample i do

ci = argminj ‖xi −mj‖2
end
Step 2.b:
foreach centroid j do

mj =
∑m

i=1 1[ci=j]xi∑m
i=1 1[ci=j]

end

end

2.a defines the nearest centroid to each data sample xi. While in 2.b, µj is the current
guesses for the positions of the centroids at timestamp j. A good clustering of the data is
dependent on the initial positions of the centroids. To check if clusters are good clusters at we
can use the distortion function:

J (c, µ) =

N∑
i=i

‖xi − µci‖
2 (2.7)

Where J computes the sum of squared distances for each data sample xi and assigned centroid
µci .

2.3 Learning Techniques

2.3.1 Transfer Learning

The aim of transfer learning is to use previously gained knowledge from one domain and apply
it to a new but related domain. In the hope that the model learns the new domain quicker
and with greater accuracy than simply training a model from scratch. In practice we reuse the
generic layers (layers close to the input of the model) and create new task specific layers (the
layers closer to the output of the model). During training we freeze the weights of the generaic
layers allowing the task specific layers to learn. Generally transfer learning is defined as:

D = {X , P (X)}, T = {Y, f(·)} (2.8)

Where domain D holds our feature space X and a probabilistic distribution P (X) where
X = {x1, ..., xn} ∈ X . Task T holds our label space Y and some model function f(·). The
task learns from data consisting of pairs {xi, yi} from X and Y respectively, resulting in our
function f predicting the corresponding label ŷ from f(x). Now that we have Domain D and
our learning task T , and we have a new target domain DT and learning task TT . We use
knoweldge from D and T to help fT (·) learn in DT .

14

Chapter 2 2.3. Learning Techniques

Fine Tuning is a sub-technique of transfer learning in which we unfreeze some (or all) of the
early layers in our model. During training, we use a smaller learning rate than normal since we
are assuming the pre-trained weights are already good when compared to randomly initialized
weights. If our learning rate is too large than the model can collapse and will be unable to learn.

Figure 2.2: Fine Tuning is one of many sub-technique of transfer learning. This Illustration
shows some of the other transfer learning methods [11]

The only criteria to using transfer learning and its variants are to ensure that the dataset for
the specific task is simpler to the dataset that was used on the pre-trained model. The general
rule for fine-tuning and transfer learning is as follows:

Dataset is similar to
pre-trained dataset

Dataset is not similar to
pre-trained dataset

Large amounts of data Fine-tune on all layers Train model from scratch

Small amounts of data
Freeze all layers apart from
last few layers and train, as
described in standard transfer learning

Train on a smaller model from
scratch and use pre-processing
methods like data augmentation
and post-processing methods
like test-time augmentation

Table 2.1: Criteria for when we should use transfer learning, fine-tune or neither [12]

2.3.2 Active Learning

The active learning hypothesis states that if the learning algorithm is allowed to choose the
data or be given more important data from a sample pool, then it will perform better with less
training. One of the properties of this hypothesis is that we would require fewer data and -

15

Chapter 2 2.3. Learning Techniques

more importantly - less labelled data. This is juxtaposed with traditional supervised learning,
in which we are often training with thousands of labelled samples and long training times. This
is becoming a desirable property in current literature with many notable researchers (including
Yoshua Bengio and Geoffrey Hinton - 2 out of the 3 winners of the 2018 Turing Award) stating
we need to move away from using more data and labelled samples in general [13, 14]. Their
reasons include model overfitting and labelling of data getting more expensive [15].

The active learning scheme applies the hypothesis by querying unlabelled samples to be
labelled by an oracle, often a human annotator but could be some information source. The aim
is to achieve high accuracy with little labelled data, thus minimizing the cost of labelled data.
How we select data (known as a query strategy in the literature) to be queried and the types
of queries (known as active learning scenarios in the literature) are dependent on the active
learning problem being proposed. The 3 main active learning scenarios are (1) membership
query synthesis, (2) stream-based selective sampling, and (3) pool-based sampling.

Membership query synthesis is the scenario where the model generates its samples from
the feature space distribution and then queue that generated sample to the oracle [16]. The
advantage of this style of learning is that the dataset can be small and is efficient for finite
problem domains [17, 18]. Lang et al used this scenario with human annotators to train a neural
network in classifying handwritten characters [19]. However, they found that the generated
samples contained many non-recognizable symbols, generating artificial hybrid characters
instead. To fix this drawback an alternative was discovered named selective sampling. The
assumption in this scenario is that the unlabelled sample can be obtained inexpensively, thus
allowing the model to sample from the actual distribution and evaluate the informativeness of
the unlabelled sample [20, 21]. The model then decides to request the sample to be labelled or
not. The scenario is often called steam-based selective sampling as we evaluate each unlabelled
sample one at a time. We can also ensure that each query given to the oracle is of a high
standard as it is from the real input feature space distribution. Pool-based Sampling is the most
common scenario within active learning due to situations where researchers have large amounts
of unlabelled samples. In this scenario the model generates queries from a pool of samples, the
model selects a query greedily. This is often in the form of an informativeness measure evaluated
on all samples within the pool. The most informative samples are then queried to the oracle [22].

The query strategy refers to how we evaluate the informativeness of unlabelled samples.
The query strategy used in the literature is uncertainty sampling [22]. The approach works by
querying the samples which are the least confidence in labelling. General uncertainty sampling
is defined as:

x∗LC = arg max
x

1− Pθ(ŷ|x) (2.9)

where x∗LC is the least confident sample and Pθ(y|x) refers to the probability that sample x is
label y using model distribution θ.

2.3.3 Online Learning

Online learning (also known as incremental or out-of-core learning) refers to a specific style
of learning within machine learning where the training data becomes available in sequential
order over time and we update our model at each step. Commonly in machine learning, we
have access to the entire dataset to which we can train our models. Online machine learning
involves a specific situation where it is infeasible to train on the entire dataset. A property

16

Chapter 2 2.3. Learning Techniques

of this situation is that we will have the model distribution which will change over time,
thus normally these models are extremely sensitive to any change. The sensitively of the
model risks a common error within this style of learning named catastrophic interference,
in which a model abruptly forgets learned knowledge after getting new knowledge. However
updating models after each new data sample can be a desirable property due to its scalability
in real-world data analytics applications, where data is large and arriving fast [23]. In these
situations traditional supervised learning would need to be re-trained once a collection of
training samples had been collected, thus the model would have high time and space complexity.

Figure 2.3: Taxonomy of Online Learning Techniques [23]

Online learning with full feedback is supervised learning tasks where the information is
learnt by the model at the end of each online learning round. We further divide this topic
into online supervised learning and applied online learning. Online supervised learning consists
of the fundamental approaches of online learning in a supervised setting while applied online
learning consists of non-traditional and often very problem-specific approaches. Online learning
with partial feedback is the second main topic of online learning where the model makes a
prediction on an incoming sample and is simply informed if that prediction is true or not. The
is different from online supervised learning as the model is not informed what the correct label
is if the prediction is wrong. For these styles of problems, the model makes the prediction
based on balancing the distribution of disclosed knowledge with the exploration of unknown
knowledge.

17

Chapter 2 2.4. Deep Learning

2.4 Deep Learning

Figure 2.4: A Venn diagram illustrating the structure of AI to Deep Learning. We show that
deep learning is a type of representation learning, which is a type of machine learning. Machine
learning is only one branch of AI [24]

Deep Learning approaches create deeply structured neural networks (and variants) with some
form of representation learning [25]. A philosophy of deep learning over the years has been
to create larger structured neural networks with more data. This philosophy and approach
have been successfully applied to many fields including computer vision, natural language
processing, bioinformatics, and many more [26].

Representation learning is the process of learning the best way to represent the data so
we can get better performance in our models. Often called feature learning as a sample Xi

would have features Xi = {x1i , x2i , ..., xNi }, where N is the number of features and xji is the jth

feature of Xi. A feature is a single characteristic of something being observed. For example,
we can observe the sepal and petal length and width of a given species of Iris flowers [27]. A
single representation is a collection of observing a single flower. Before representation learning,
we would design - by hand - all the representations before attempting to get a model to learn
the patterns in the features. The hypothesis in representation learning is that there are many
different representations (or features) from a given sample, and it is believed that by applying
optimization algorithms we can find hidden representations that greatly improve learning in
the data [28]. These learnt representations might not all be task-specific (like in hand-made
representations) but would still likely be useful for the general-purpose learning of the greater
domain that the task is within.

18

Chapter 2 2.4. Deep Learning

2.4.1 Neural Networks

Artificial neural networks are the bases for a lot of deep learning architectures we have to-
day. The original inspiration of neural networks comes from the information processing and
distributed communication within biological neural networks and other biological systems [29].
To demonstrate neural networks we break its principles into the following sections;

• [Section 2.4.1.1] - The Perceptron and the Structure of Neural Networks: The founding
building block of neural networks the perception and how we use many perceptrons to
create the structure of the neural network

• [Section 2.4.1.2] - Activation Functions: Discuss if information should be passed through
a particular area in a neural network or if we should discord it

• [Section 2.4.1.3] - Softmax Function: The final layer of a neural network which results in
our predictions

• [Section 2.4.1.4] - Backpropagation: The widely used method for calculating derivatives in
neural networks that we use to add newly learnt knowledge throughout the neural network

• [Section 2.4.1.5] - Regularization: Methods for ensuring that neural networks learn the
general principles of the training data and not learn residual variation (which we call
noise) [30]

2.4.1.1 The Perceptron and the Structure of Neural Networks

Figure 2.5: The perceptron is the weighted summation of an input vector plus some bias. We
pass this value into some activation function g(·), this is illustrated in b. a: the input vector X
where x0, x1, ..., xn is a set of features up to size n. c is our prediction for if our input is positive
or negative [31].

A single perceptron decides if some real-valued vector X is a positive or a negative instance [31].
To determine if a vector is positive or negative we take the weighted summation of X and pass
into some activation function, this is illustrated with figure 2.5. The main takeaway from the
perceptron is the main contributor to determining if the input should be positive or negative

19

Chapter 2 2.4. Deep Learning

is the value of our weights. Given we went some desired output or to be as close as possible
to some output, we can change our weights accordingly. We often call a single perceptron a
node and we can have many nodes in a layer we often call this a single layer perceptron, as
to separate it from a multilayer perceptron. We can add many perceptrons in a single layer
and have multiple layers within our model structure. Finally, we can formally write our neural
network:

h1 = g1(W 1X + b1)

h2 = g2(W 2h1 + b2)

·
·
·

ŷ(X) = WNhN−1 + bN

(2.10)

where hi is the output of layer i, X is our input vector, W i our weights for layer i, bi is our
bias for layer i, and finally gi(·) is our activation function for layer i.

2.4.1.2 Activation Functions

Activation functions determine if the output of a given node is positive or negative. The main
category of activation functions used in neural networks is non-linear, meaning the output cannot
be reproduced from a linear combination of inputs. We use non-linear activation functions to
allow us to map our inputs to our outputs. If we do not have any non-linearity in our networks,
then all neurons behave the same and we would not be able to perform some of the complex
tasks that are common in deep learning. A common activation function is the sigmoid function
[32]:

σ(x) =
1

1 + e−x
(2.11)

where x is our weighted sum of inputs. Sigmoid returns either 1 or 0 to determine if the weighted
sum (which is a real-valued scalar) to be positive or negative. This can be an issue and is known
as non-zero-centred, this is because the output is always a positive number and results in large
gradient updates in a certain direction during backpropagation, making optimization harder
[33]. Sigmoid can also stop weight updates which effectively stops the learning process. This
is because often the local gradient is or is near zero when there are large negative values [33].
Another common activation function is the Rectified Linear Unit [34]:

max(0, x) (2.12)

where x is our weighted sum, thus removing only negative weighted summations. When are
model is learning we do not want all our neurons to be activated (that is to return a positive
result for each neuron), as the computational cost of such a task is extremely high. How-
ever, having all our neurons activated can be perceived as a good because we would be not be
disregarding any knowledge that we learnt in during a single iteration. To help with this com-
putational limit we would want only a selection of the most important neurons to be activated.
ReLU has the benefit of around 50% of the neurons would be activated, thus the model becomes
lighter [33]. This is why ReLU become the ”go-to” activation function for large deep learning
models. The drawback to ReLU - just like sigmoid - is that it is zero centred. To help with this
issue Leaky ReLU was proposed, which takes into account a small number of negative values
[35]:

max(0.1x, x) (2.13)

20

Chapter 2 2.4. Deep Learning

2.4.1.3 Softmax Function

The softmax function is the final layer of the neural network, where it is used to normalize the
output of the network to a probability distribution. This distribution consists of k probabilities
where k is the number of labels. Softmax is required as the neural network penultimate layout
outputs real-valued scores that do not scale, thus is challenging to work out which label the
network is predicting. Generally the softmax function is as follows [36, 37]:

σ(
−→
Z)i =

eZi∑K
j=1 e

Zj
(2.14)

where
−→
Z is our input vector from the neural network consisting of {Z0, ..., Zi}, eZi is the

standard exponential function which gives a positive value above 0. The bottom term is our
normalization term that ensures we have a valued probability distribution, and finally, K is
the number of classes. The drawback of softmax is that it tends to produce results close to
0 or 1, thus should be careful in using it as the true probability, especially when measuring
uncertainty or other Bayesian machine learning tasks. [38]

The softmax function is a smoothed and differentiable alternative to the argmax function
[24]. During training, we use softmax as its differentiable allowing us to optimize a loss function.
However for inference, we often just need a single predicted label as our output. In these situ-
ations, we argmax, which converts the input vector to zeros apart from the largest probability,
which is set to 1.

2.4.1.4 Backpropagation

Backpropagation (short for Backward Propagation of Errors) is the key algorithm in supervised
learning and brought the recent surge in popularity of deep learning [24]. At the end of
each training iteration a loss function is calculated, this is a scalar representation of how
far the predictions are from the ground truth labels. We use backpropagation in calculating
the gradient of the loss function concerning each of the weights in the neural network. This
ensures each weight is updated to gradually reduce the loss function over time. We refer to
this process as going backwards as the calculation of the gradient goes backwards from the
last year to the first layer of the neural network. At any particular layer in the neural net-
work, we calculate the gradient using the gradients of all the following layers using the chain rule.

The first stage in backpropagation is to accept input vector Xi and feed it through the
layers of the network to produce ŷ, as shown in equation 2.10. This process is known as forward
propagation. We then compute our error with the loss function L(y, ŷ). The lower the value
the closer ŷ is to y. When the neural network first starts training the result of the loss function
is high and over the training iterations, we should have a low error rate. To lower the result of
our loss function we gradually adjust the weights. This requires us to calculate the derivate of
L with respect to every weight in the neural network:

∂L
∂W i

jk

, (2.15)

whereW i
jk is the weight of neural network going from neuron j in layer i−1 to neuron k in layer i.

We could compute each derivative of L with respect to each weight using the chain rule,
however, this is extremely inefficient as we could have already computed the derivative of the

21

Chapter 2 2.4. Deep Learning

layer i − 1. Therefore in backpropagation we first calculate the derivate of the last layer N ,
we then use this derivate in the chain rule formula for layer N − 1. So we work back through
the neural network, each time using the last derivate calculation to obtain the current layers
derivative using the chain rule.

2.4.1.5 Regularization

Figure 2.6: A: Underfitting - Occurs when models cannot obtain a low training error. B:
Overfitting - Occurs when the gap between training and testing error is large. The dots are the
training samples and the red line is our predicted line by a trained model.

The objective in machine learning - for a supervised learning setting - is to perform well on
previously unseen data. This notion is called generalization. During training we show the
training dataset to the model and compute some loss function to measure the error, this is
called the training error. However, we also want the testing error (also called generalization
error) to be as low as possible. We estimate this error by measuring the performance on the
testing dataset. In the loss function of linear regression (as shown in equation 2.3) we compute
the loss on our training data (xi, yi), however, what we care about is the loss on the testing
dataset:

L(c,m) =
1

2N

N∑
i=1

((c+mxtesti)− ytesti)2 (2.16)

To affect the performance on the testing data when we are only observing training data,
we make a few assumptions: (1) we assume the data of both training and testing sets are
not collected arbitrarily. (2) We assume that each sample (xi, yi) from both datasets are
independent of each other. (3) Finally, we assume that both training and testing datasets are
identically distributed, meaning that we collect the data from the same probability distributions.

Under the supervised learning process we sample our training dataset and choose the weights
that reduce the training error, then we sample the testing dataset. We can expect that the
testing error to be greater or equal to the training error. To determine how well a model
generalised is directly related to the models’ ability to make the training error small, while

22

Chapter 2 2.4. Deep Learning

also making the gap between the training and testing error small [24, 26].These 2 objectives
correspond to the 2 challenges of machine learning: underfitting and overfitting, as illustrated
by figure 2.6. To address underfitting a common strategy is to use deeper neural networks with
more layers and more neurons per layer. This is because it is believed that the model may not
have enough neurons to capture the patterns in the training dataset [39]. It is also possible
that the model has not found any of the optimal weights yet, thus could require more training
time. Overfitting occurs as a result of fitting to the training data too well and not learning the
general patterns of the training dataset. A way to address this is to add noise to the data or
add more diversity to the dataset. This is known as data augmentation and is one of many
regularization techniques. Another common regularization technique is to add a regularization
term to the loss function, which is a type of penality to our model f :

N∑
i=1

L(f(xi), yi) + λR(W) (2.17)

where L is our loss function, λ is a hyperparameter which determines how important the regu-
larization term is and finally R(W) is our regularization term where we pass the weights of our
model f . The 2 main regularizers that are used are L1 and L2 regularization:

R(W) =
N∑
i=1

wi (2.18)

R(W) =

N∑
i=1

w2
i (2.19)

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is one of many types of deep learning algorithms that
are designed to be used with structured multidimensional arrays of data. originally gaining
huge popularity in computer vision due to images being a type of multidimensional data and
its representation learning properties. At the time many approaches in computer vision used
hand-made approaches or algorithms like Histogram of Oriented Gradients (HoG) [40]. There
was a huge desire to have the features be learnt instead of using an algorithm or hand-made
features. CNN’s take advantage of the spatial domain of images by learning localized spatial
relationships of features. This is accomplished by using kernel-based convolutions to extract
the localised features, named convolutional layer. During training we learn the formulation of
the kernel space which acts as our weights, providing a small parameter set to optimize with
backpropagation. This is opposed to neural networks which have many more weights when
using multidimensional arrays. Within a convolutional layer, it is common to stack many
kernels together in sequential design, it is this design that allows us to learn the complex
hierarchical features of some images. Each convolutional layer is followed by an activation
layer, while some may also have a pooling layer.

23

Chapter 2 2.4. Deep Learning

Figure 2.7: C1: The convolutional layer has 6 kernels of size 5x5 which ”walk over” the raw
input image, and outputs 6 28x28 images(known as feature maps). The goal of the first few
layers is to find basic features like edges and corners. S2: The average pooling layer takes a
square of 4 pixels (from the feature map) and averages them to a single pixel. Thus the pooling
layer scales down the image by a factor of 2. C3: the second convolutional layer that has 16
kernels of size 5x5. S4 is another pooling layer with the same specification as S2. C5 is a fully
connected convolutional layer which has a 1D array of length 120 as the output. Each element
of the output array is connected to all 400 weights in S4 (5x5x16). F6 is a fully connected layer
mapping the 120 elements array to a 10 element array, where each element corresponds to a
digit. [41]

LeNet is one of the earliest convolutional neural network architectures which was proposed
by Yann LeCun et al in 1998 [41]. It is often used today to aid in understanding the design
principles of CNNs. LeNet was designed to recognize handwritten digits 0-9, this the input
is the raw image of a digit and the output is the probability distribution representing the
confidence score of the input being a digit 0-9. LeNet-5 is a very small CNN - by today’s
standard - with 3 convolutional layers, 2 pooling layers and a fully connected layer. It is
powerful enough to classify digits but not, for example, all 26 letters of the alphabet. Today
many of the CNN architectures have millions of parameters and tens of layers.

The convolutional layer is the key principal in CNNs that utilising the representation
learning scheme. Each kernel ”walks over” the feature map producing an output that describes
the result of the learnt kernel. Each kernel is a square matrix where each element is a learnt
weight of the features within the kernels region of interest. In training, we optimize the kernel
weights to learn various localized features. The early kernels in the network learn basic features
while later kernels learn more complex features of the image like texture.

24

Chapter 2 2.4. Deep Learning

Figure 2.8: The first operator of the CNN architecture, the convolutional layer: the kernel is
placed in the top left corner and slides over the feature map multiplying each element in the
regain of the kernel with the element value in that kernel.

We formally define the feature map as a result of a kernel which contains the weights to be
optimized:

ali′,j′k′ + 1 =
∑
i j k

Wijkk′ a
l
i+j′, j+j′, k, (2.20)

where i, j, k are the array height, width and channel indexes of the input, kernel W is convolved
over the input al and returns al+1 [42].

25

Chapter 2 2.4. Deep Learning

2.4.2.1 Architectures

Figure 2.9: A is the 16 layer variant of the VGG Network while B is the 19 layer variant [43, 44].
All convolutional layers have 3x3 kernels with a stride of 1 and a padding of 1. All pooling
layers use max-pooling and have a kernel of 2x2 and a stride of 2.

The architecture of a CNN refers to the design of the network structure. There are many
different designs but generally, the sophisticated designs we have today are inspired by either
the VGG Network, ResNet or MobileNet. VGG16/19 are designs that were originally proposed
for the ImageNet challenge in 2014 and are inspired by AlexNet [43, 45, 2]. The ImageNet
challenge was a competition between 2010 and 2017 to evaluate algorithms for object detection
and image classification on the scale of 1000 classes. While developing the VGG Network the
authors found that 2 3x3 kernels have the same receptive field as a 5x5, this is a useful insight
as 2 3x3 kernels have fewer parameters and thus less computation than 1 5x5 kernel. With the
idea that bigger models perform better, computation became more important and thus insights
like this helped in authors winning the 2014 ImageNet challenge.

26

Chapter 2 2.4. Deep Learning

Figure 2.10: Each of these diagrams represent the 3 contributions that He et al proposed for
CNN architecture designs. In Diagram A they show the training error(on the left) and the
testing error (on the right) of 2 different networks, a 20 layer and a 56 layer network. They
show that the deeper the model the more it begins to underfit to the dataset. As shown by the
20 layer model performing better both in training and testing. This resulted in the construction
insight. Diagram C is the Residual block which allows us to skip convolutional layers, allowing
deeper models to emulate shallower models. Diagram B is the resulting network that was built
using stacks of residual blocks. [44, 46]

He et al found that if we kept stacking convolutional layers, the training will eventually get
worse, this is illustrated in charts A of figure 2.10 [46]. They took a 20 layer and a 56 layer
network and trained it on the CIFAR dataset [47]. The charts seem to show that the deeper
model is underfitting to the data, and as a result, they hypothesised that deeper models are
harder to optimize and not learn to identify functions to emulate shallow models [46, 44]. This
leads them to the following construction insight:

Considering a shallow and deeper model, the deeper model needs to copy the shallow model,
with identify mappings. This suggests that deeper models should result in no higher training

error than the shallow model [46]

As models were getting larger they began to overfit and as a result, He et al proposed the
Residual Block and Residual Network (ResNet) as illustrated in image B and C of figure 2.10
[46]. The residual block is a way to make it easier for deeper networks to learn to emulate
shallower networks in the situation where the deeper network has more layers than it needed.
A residual block consists of 2 convolutional layers, in image c of figure 2.10 this is referred to as
F(X). Where X is a feature map. At the end of the block, we add the input X to the result of
F(X), this adding of X to our function is known as the residual additive shortcut. As a result of
adding this shortcut to our model we can now learn the identity function, this is accomplished
by setting weights in the convolutional layers to 0. Allowing use to emulate shallower networks.

27

Chapter 2 2.4. Deep Learning

A Residual Network is a stack of these residual blocks where the design of the convolutional layer
structure is inspired by the VGG networks. The ResNet design divides its convolutional layers
into stages, between each stage we double the number of channels starting with 64 channels,
each layer also has a 3x3 kernel simpler to the VGG network. For each pair of layers, we
add a residual block, allowing us to skip layers if needed. The result of this network is that
we have larger networks but have the same or less computational complexity compared to the
other architecture designs of its day. These deeper networks while utilising less computational
complexity helped beat the state of the art results and the authors won the ImageNet challenge
that year.

Figure 2.11: Image A displays a flowchart of standard grouped convolutions with 2 groups, in
which we take input and split the channels in half. We then perform our convolutions on each
slide in parallel. Finally, we concatenate the 2 slides which result in our output. Image B is the
design architecture of MobileNet. It consists of 2 blocks that we can repeat as many times as
needed. Block 1 is a depthwise convolution with a 3x3 kernel, followed by batch normalization
and a ReLU activation function. Block 2 is the same as block 1 apart from we replace the
depthwise convolution with a pointwise convolution. [44, 48, 49]

As the development of new and better architecture designs where proposed, a bigger fo-
cus was spent on computational complexity, therefore questions like ”Can we sacrifice a small
portion of accuracy for much better computational complexity?” or ”Are we able to train and
test our models on embedded devices?”. This inspired Howard et al and proposed an efficient
design called MobileNet [48]. MobileNet uses a special case of grouped convolutions in which
we split the task of convoluting over an image in parallel [49]. This is accomplished by di-
viding the channels of our input by the number of groups, which we set as a hyperparameter.
The flowchart A in figure 2.11 illustrates a convolution with 2 groups. We divide our chan-
nels by 2, perform a convolution with a kxk kernel on each side and finally concatenate the
2 results. We can measure the computational complexity by using the Floating Point Opera-
tions per Second(FLOPs) measure. In a normal convolution we measure FLOPs by computing
CoutputCinputK

2HW , where Coutput and Cinput are the number of channels for the output and
input, K is the size of the kernel, and finally, HW is the height and width of the input image.

28

Chapter 22.5. The Challenges of Combining Deep Learning, Active Learning and Online Learning

In a grouped setting we divide the FLOPs buy G where G is the number of groups:

FLOPs =
CoutputCinputK

2HW

G
(2.21)

MobileNet uses a special variant of grouped convolutions where G groups are equal to the
number of channels, known as depth-wise convolutions [50]. Along with depthwise convolutions
we often use another type of convolution that uses a 1x1 kernel to iterate through every pixel.
Known as pointwise convolution, it forms a class of convolutions known as depthwise-separable
convolutions [50]. The larger a model gets the more sensitive to the initial weights the model
becomes. A common hypothesis for this is that the distribution of inputs to layers in the model
may change with each minibatch as the weights get updated. This hypothesis is referred to
as internal covariate shift. To solve this the technique known as batch normalization is used
to normalize the inputs to a layer for each minibatch [51]. A nice property of this technique
is that it reduces the amount of training time required as a result of normalizing the learning
process. With techniques like depthwise-separable convolutions and batch normalizations lead
use MobileNet, as illustrated in image B of figure 2.11. MobileNet uses 2 blocks, the first is a
depthwise convolution as input followed by batch normalisation and a ReLU activation function,
the second is the same apart from the use of a pointwise convolution instead of a depthwise
convolution. This structure repeats until we get to our standard task-specific block which is
dependent on the task, however, it often includes a fully connected convolutional layer to fully
connected layer and finally a softmax layer.

2.5 The Challenges of Combining Deep Learning, Active Learn-
ing and Online Learning

In recent years there has been many workshops and talks by many researchers on the challenges
of deep learning techniques learn and if these techniques are underfitting, while others have
talked about the changing distribution of data and complexities. Deep learning has a strong
ability to process large amounts of high-dimensional data with an accurate feature representa-
tion, while active learning can reduce the cost of labelling and online learning can minimise the
use of more data while also having a changing distribution. There is hope to combine these ap-
proaches with the obvious benefit of expanding the application potential due to each approach
solving each other’s drawbacks. Applying deep learning to an active online learning setting is
difficult to apply this is due to:

• Minimal data and labels: Active learning uses a small amount of data and online learning
has an ever-changing pool of samples, meaning that different classes will appear more
often than others. Deep learning is very greedy with the amount of data it requires,
contradicting active and online learning [52].

• Uncertainty Modelling in selecting a sample for querying: Many active learning techniques
use an uncertainty metric to find which samples or classes the model is least confident
about. These samples are then queried to an oracle. Many deep learning techniques use
a softmax layer to obtain the probability distribution on a sample. Softmax has been
proven to be too confident, as a response the active learning community find it unreliable
as a measure confidence [53].

• Representation Learning: in Active Learning: Active learning mostly focuses on training
the classifier with some query strategy. Many strategies assume that there is a fixed
feature representation. As discussed in section 2.4.2 deep learning techniques learn the

29

Chapter 2 2.6. Object Detection

feature representation and the model training at the same time. Current solutions only
propose fine-tuning models for active learning frameworks [54, 55].

Some proposes have been made such as applying data augmentation to the minimal data issue
or use a multi-stage model to deal with the representation learning issue [54, 56, 57]. Others
have proposed learnable query strategies by using Bayesian active learning techniques [58]. No
approach solves all these problems and continues to be an open problem today [55].

Some have proposed deep learning solutions that can solve some of the challenges above.
One of the largest areas of active learning has been applied successfully in computer vision.
The main challenge in this context is that traditional active learning methods fail to gain good
performance on small labelling when using high-dimensional data [55]. Wang et al [54] proposed
assigning pseudo-labels to unlabelled samples that have high confidence from some classifier, to
then add them to an uncertain sample set. which is queried by a deep Bayesian method for
measuring uncertainty. Uncertain samples are queried to oracle. The model trains end to end
with a multi loss consisting of the classifier loss and the Bayesian method loss functions. This
approach is also well suited for online learning as we do not know the labels beforehand, but over
the training, the model replaces the pseudo-labels with the labels written by the oracle. Object
detection has also seen a lot of use in active learning due to the high label costs [59, 60, 61].
However, due to the computational complexity cost and training time, object detection is rare
to see in online learning settings. Many of these techniques require a fixed representation space,
therefore many use transfer learning methods to first learn the representation and then apply
to an active learning framework. This results in some methods using a two-stage approach, the
drawback is that the second model is highly dependent on the first models’ results.

2.6 Object Detection

Figure 2.12: General model structure for an object detector in deep learning. The base model
for finding features (hence the name feature executor) in this example is AlexNet, followed by
2 fully connected layers that branch into their different tasks of what the object is and where
the object is in the image

30

Chapter 2 2.6. Object Detection

One of the most studied and popular areas in the field of computer vision, object detection
is the task of localising and classifying each semantic object within an image or video. The
challenges of object detection are (1) multiple objects that could be anywhere in the image, (2)
objects are overlapping, (3) 2 types of output for each object (a category label and a bounding
box), (4) large images result in large processing time.

Generally, in a deep learning setting, we have some feature executor as our base model which
branches into 2 layers; a fully connected layer with softmax for classification of the object, and
a regressor layer to find ”where” the object is in the image. Therefore the final model has 2
outputs and can be trained end to end. This is illustrated in figure 2.12. There are many base
models to select as we can take any model that was designed for classification and modify the
last fully connected layers. Thus any model from subsection 2.4.2.1 can be used for a detection
task. As we have progressed within this field bigger models with more data have been used to
get better accuracy, however at the cost of efficiency in training and testing time. Girshick et
al were the first to propose a method which uses a CNN for gaining greater accuracy in object
detection tasks, named Region-Based Convolutional Network Network(RCNN) and uses two
stages within the detection [6]. The first stage finds regions within the image that the model
thinks might have an object in it, while the second stage extracts feature from the regions
which are then used to predict a label and a bounding box. With each variant of RCNN better
accuracy and quicker testing time resulting in high localization and object recognition. However,
even with the fastest variant of two-stage detectors were still slow when being used with video.
Some approaches have been used to combat efficiency issues such as MobileNet and PeleeNet
but are a current research problem being pursued [62, 63]. One-stage detectors are alternatives
to the two-stage detectors in which they propose methods to directly predict bounding boxes
from the image, this no first stage of getting regions. Generally, one-stage detectors are more
time-efficient and are used for real-time object detection tasks. The trade-off of using one-stage
detectors is that they are often less accurate in localising and classifying an object [64].

31

Chapter 2 2.6. Object Detection

2.6.1 Two Stage Object Detectors

Figure 2.13: The RCNN design splits process of object detection into 4 modules: (1) generate
region proposals, (2) extract features from regions, (3) classify modules in the regions, (4) predict
a bounding box for that region. A is the first design in the RCNN family which uses selective
search on the raw image, wraps the resulting regions, extracts the features of the regions with
a pre-trained CNN and finally predict the object and bounding box. Fast RCNN (image B)
changes RCNN by extracting the features from the raw image and then use the selective search
on the final feature map. Each of the resulting regions is resized with an ROI pooling layer so
we can keep the spatial information of the region. We then get a feature vector from each of the
regions bypassing them through a fully connected layer. Finally given each vector we predict
the object and the bounding box of in the region. Lastly image C is the Faster RCNN variant
where we completely replace selective search with a learnable method called region proposal
network [6, 65, 66].

RCNN was the first to propose a CNN architecture that could perform well on object detection
tasks on the PASCAL VOC dataset [6, 67]. The RCNN design consists of 4 modules:

1. Generate region proposals

2. Extract fractures from regions

3. Multiple Support Vector Machines (SVM) to classify objects from each feature vector

4. Bounding box regressor for accurate placement of the bounding box

For module 1 Girshick et al propose using the selective search algorithm, which generates initial
sub-segmentations of the image [68]. The algorithm then selects all the sub-segments that are
the most similar and combine them. This is an iterative process where it keeps combining
the sub-segmentations, thus we need a hyperparameter to state how many times we iterative.
Each segment of the image becomes a proposed region. In module 2 we use a pre-trained
CNN to extract a 4096-dimensional feature vector. The CNN requires a fixed size input, thus
Girshick et al wrap each region proposal to be 227x227. Within module 3 we use categorical
independent SVM where each SVM is a binary classifier for background or the specific class
that the individual SVM is designed to detect. Each SVM do not share the weights and

32

Chapter 2 2.6. Object Detection

therefore are independently trained. Finally, in module 4 we use a bounding box regressor to
predict the correct (x′, y′, h′, w′) given the (x, y, h, w) from the position and the size of the
region proposals. This step is required as the authors found that while testing the bounding
boxes were offset due to the region proposal process. RCNN has a very high competition
time due to using selective search [64]. Each image has around 2000 regions proposed in both
training and testing time that then has to be passed to a CNN to extract its features. This
process is very slow at around 40-50 seconds to predict each new image using some of the
highest-end hardware on the market at the time. A result of this slow prediction time meant
that this approach was almost impractical on large datasets like COCO and PASCAL VOC.

With the limitations of RCNN Ross Girshick proposed a faster variant of the same design
named Fast RCNN [65]. As RCNN performs a forward pass on the base model for each region
proposal without sharing computation, the SVM classification can take a long time. TO speed
this process up Fast RCNN extracts the features from the entire image. Then perform a selective
search on the final feature map. Fast RCNN still needs a fixed size region proposes, therefore
the author utilizes a region of interest (ROI) pooling layer. This layer takes as input all regain
proposal coordinates and we take the feature map sections that correspond to the coordinates
and converts it into a fixed dimension. These fixed size regions are then passed to a fully
connected layer resulting in a 4096-dimensional vector. Finally just like RCNN we pass the
vector to our SVMs to classify the object (if there is an object in the region proposal) and predict
the bounding box with a regressor layer. Fast RCNN was a huge improvement on RCNN with
a large amount of time saved for the feature extraction and a large reduction in disk storage
due to not storing the features to disk. Fast RCNN also uses an end to end training process due
to a multi-task loss on each region proposals. ROI pooling layer has the added improvement of
not needing to wrap the image and therefore we reserve the spatial information of the region
proposals. The experiment results in Fast RCNN having a 7% increase in mAP(the metric used
to evaluate object detectors, see section 2.6.3) and is 9 times faster than RCNN in both training
and testing time [65]. Due to the computational speed of selective search, this approach still
could not be used for real-time object detectors, or when using very large datasets. There was
also a desire to experiment on if we can learn to find regain proposals during the training stage.
This lead Girshick et al to create Faster RCNN with the use of a region proposal network (RPN)
[66], which replaces selective search in Fast RCNN. The RPN is a fully convolutional network
that can predict region proposals with many different scales and aspect ratios., The network
decreases the generating region process speed due to it sharing fully convolutional features and
a common set of convolutional layers. The RPN can predict regions by ranking the region
boxes(known as anchors) and propose the regions that are the most likely to contain an object.
This accomplished by generating 9 anchor boxes at 3 different scales and aspect ratios. Each
of the region proposals is parameterized relative to one of these other boxes. We then measure
the distance between a predicted region proposal and the ground truth bounding box, we then
optimize this metric during training. The experiment results of Faster RCNN show that there
is a 4% increase in performance and it is 10 times faster than Fast RCNN using the same base
model and dataset.

2.6.2 One Stage Detectors

You Only Look Once (YOLO) is one of the first proposed one stage object detectors by
Redmon et al in 2015 [69]. They were able to successfully show an accurate real-time object
detector. In there, experiments YOLO performs at 45 fps compared to Faster RCNN which
performs at 7 fps on the same dataset and hardware. They were able to accomplish this in one

33

Chapter 2 2.6. Object Detection

stage by thinking of detection as a regression problem and predicting all bounding boxes of the
image in one forward pass of there model.

The YOLO pipeline consists of dividing the input into an SxS grid, where each cell is
responsible for detecting a single object. Each cell in the grid predicts B bounding boxes
(x, y, w, h, confidence). x, y are the coordinates of the centre pixel in the cell. w, h refers to
the width and height of the bounding box prediction. The confidence score is the probability
that some class yi is in the bounding box multiplied by the IoU metric of the predicted box
by the ground truth bounding box. As all bounding boxes are predicted in one forward pass
of the YOLO model the output tensor is SxSx(Bx5 + C), where C is the number of classes.
The network itself consists of 24 convolutional layers followed by 2 fully connected layers, one
for predicting the bounding box coordinates and the other for object probabilities. The YOLO
family of methods have become one standard way to accomplish real-time object detection with
each iteration adding different design choices from previous works such as batch normalization,
and adding independent logistic classifiers to the ends of the models, useful for overlapping
labels.
The second family of methods for use in real-time object detection are the Single-shot detectors
(SSD) proposed by Liu et al in 2015 [70]. The method behind SSDs is to use a fixed set of
default bounding boxes with many different scales and aspect ratios for different feature maps
within the network. The prediction is the class source and box offsets for one of these default
bounding boxes. For each feature map, a different scale is used for the default bounding boxes
as each feature map will also have a different scale. The feature maps learn to be responsive to a
particular scale of each object. During training, we optimize the default bounding boxes for each
given class by using IoU with the ground truth bounding box. This should mean that we get
many negative bounding boxes as most of the image will be the background. To accommodate
for this the authors choose to add a hard negative mining technique where they use the highest
confidence loss for each default box out of all classes to optimize those boxes. The results of
this method are that it can outperform YOLO and Faster RCNN on detection metrics but have
a slower computational speed than YOLO, therefore YOLO still performs better in real-time
settings.

34

Chapter 2 2.6. Object Detection

2.6.3 mAP Metric for Object Detectors

Figure 2.14: Illustration of a Confusion Matrix [71]

A popular metric for evaluating and comparing different object detectors is the Mean Average
Precision (mAP), which is computed by first calculating the area under the Precision-Recall
Curve (PR Curve). The precision of a given class is the ratio of true positive(TP) over the total
number of predicted positives [72]. While recall (sensitivity) of a given class is the ratio of true
positive(TP) over the total ground truth positives [73]. We use both precision and recall in a
lot of different evaluation metrics for the performance of a classification task. We also merge
them in the PR Curve as another form of metric, this is performed by calculating the precision
and recall values at different confidence score thresholds.

precision =
TP

TP + FP
=
retrieved and relevant documents

all retrieved documents
, (2.22)

recall =
TP

TP + FN
=
retrieved and relevant documents

all relevant documents
, (2.23)

We use the PR Curve to visualise the trade-off between the two metrics. To achieve a high
precision the number of false positives needs to decrease, however by doing this we also decrease
our recall metric. Furthermore, by achieving a high recall the number of false negatives needs
to decrease, however, this would decrease our precision. Object detectors should find all
ground-truth objects (low false navigates) while identifying only the relevant object (low false
positives) [74]. Therefore if the precision is high while the recall increases then the object
detector is considered accurate.

In standard classification tasks it is trivial to find the TP, FP, FN and TN metrics as its
purely based on what label the classifer predicted. In object detectors we predict anchors that
form a bounding box around our objects, thus we need to measure how close the predicted
bounding box is to the ground truth box. This is accomplished as illustrated in figure 2.15. We
use IOU to check if a sample is a TP, FP, FN or TN, using the following criteria:

35

Chapter 2 2.6. Object Detection

Figure 2.15: Illustration of Intersection Over Union (IOU), the green box is the ground truth
while the red box is the prediction. The area that intersects the two boxes is our IOU metric.
[74]

Metric Criteria

TP IOU >0.5

FP IOU <0.5 or duplicated bounding box

FN No detection at all or IOU >0.5 but is the wrong classification

TN We ignore TN for object detectors as all background pixels are TN

Table 2.2: IoU Metric Criteria

Finally we can compute the area under the curve (or Average Precision in object detection
contexts) of the PR Curve. This area is generally considered the average of precision values for
each recall threshold. The general definition of Average Precision (AP) is:

AP =

∫ 1

0
p(r)dr (2.24)

where p(r) is the plotting precision as a function of recall r, as precision and recall are between
0 and 1 so is AP. A popular trend within academic literature is to interpolate the p(r) due to
the ”zigzag” problem in PR curve [74]. We use the interpulate precission to reduce computation
for computing the area, the result being a curve which decreases monotonically. A caveat for
using this method is that our curve will be less susceptible to small variations in the ranking.

pinterp(r) = max
r̂≥r

p(r̂) (2.25)

where we get the largest precision over all recalls greater than r [71].

As AP computes a score for a given label we compute the mean AP over all labels, known
as mean average precision (mAP). This is the final metric we use to compare object detectors.
Table 2.3 displays a few different criteria for computing the mAP, where the COCO challenge
variant being the most rigorous. In this case there are 9 different IOU values and we compute
the average over all 9 to give a final mAP score.

36

Chapter 2 2.6. Object Detection

mAP Criteria Notes

AP IOU = .50: 0.05: 0.95 COCO Challenge Metric

AP IOU=.50 IOU = .50 Pascal VOC Metric. Often consisted the standard

AP IOU=.75 IOU = .75 Strict Metric

Table 2.3: 3 different criteria that is often seen in literature to define mAP. Note that AP and
mAP are used interchangeably [75, 76, 74]

Object detectors often have the issue where there will be many overlapping detections given
as output. To find which is the best detection out of the overlapping detections we can apply
a post-processing technique known as non-max suppression (NMS). This technique will remove
all but the most detections which the detector is the most confident in. The technique works
as follows [77]:

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with IOU > threshold

3. If any boxes remain, Go to step 1

This technique must be noted that it will have a positive effect on the mAP and is not always
clear if a particular paper is using it when calculating their results. However, just like test-time
argumentation is valued highly once deployed in application purposes. A drawback to using
this technique is NMS may remove good bounding boxes when objects are highly overlapping.

2.6.4 Advances Object Detectors

Figure 2.16: The Hour Glass module is very simpler to the residual block, each box consists of
a skip connection but with the addition of a pooling layer [78]

One of the most important subproblems of computer vision, object detection, has gained
huge amounts of popularity in the deep learning community in recent years. Since the initial
proposal of RCNN showing that we could apply deep learning techniques to successfully beat
traditional methods in the Pascal VOC metrics [6]. As discussed previously in section 2.6
there are two main types of techniques: two-stage and one-stage object detectors. Both of
these require capturing regions within the image, the difference being how they capture the
regains. IN recent years a new idea has been gaining popularity, in that instead of predicting
a bound box, we predict the location of a set of points, representing the top left and bottom
right corners of the bounding box. Known as a keypoint estimation problem, methods like
CornerNet and CenterNet have seen success in gaining better metric scores than most one
stage and two-stage object detectors [79, 80]. However, keypoint object detectors tend to be
slower in both training and testing. CornerNet achieves a 42.2 % mAP source on the COCO

37

Chapter 2 2.7. Summary

dataset, which at the time of its publication was the best performing one-stage object detector.
Both CornerNet and CenterNet use the Hour Glass network as the feature extractor, which
was specially designed to be used for predicting human poses [78]. The network consists of
a stack of hourglass modules, which is illustrated in figure 2.16. This module works like an
autoencoder, where we downsample features to then upsample them once we reach a minimal
latent feature space. This difference is that the hourglass module consists of a skip connection
after each downsampling, allowing the model to learn features across all scales of the input. In
CornerNet the Hour Glass Network leads to two final prediction modules for each keypoint of
the bounding box. Each prediction module has a corner pooling layer - one of the contributions
by the authors of CornerNet - along with predictors for the heatmap, embedding vector and
an offset vector. The heatmap has a shape of H by W by C where C is the number categories
and each C is a binary mask indicating the location of the corner for that category. CornerNet
predicts embeddings for the corners such that the distance of the two corners from the same
object is small. A bounding box is only computed if the distance is less than some threshold,
and the confidence score is the average of both corner point confidence scores. During training
the authors do not penalize all negative locations, instead of the further away the prediction
is to the ground truth, the larger the penalty given. This is due to the bounding box of a pair
of false corners can still be a good enough bounding box to the ground truth bounding box.
CenterNet has the added benefit of a third prediction module to the CornerNet pipeline. As
the name suggests this is for predicting the centre key point of an object. The use of such a
point inherits simpler functionality as the ROI pooling layer while still keeping the network
as a one-stage object detector [80]. The difference between the 2 corner prediction modules
the centre prediction module is the use of a centre pooling layer. Center points normally do
not have many recognizable visual patterns, therefore the authors propose a pooling layer to
capture richer visual patterns. This all results in a model that performs better than CornerNet
at roughly 7% better mAP score. However, both CenterNet and CornerNet have extremely
slow training and testing time.

Training Time Friendly Network (TTFN) was proposed to have a balance between training
time, testing time and computational complexity [81]. The authors achieved this by having
one prediction module as opposed to the two and three prediction modules in CornerNet and
CenterNet. This single prediction module has one head for the heatmap - which is 1/4 of the size
of the input - and a regressor head for predicting the distance in 4 directions from the centre to
the edges of the object. Training is accomplished in the same way as CenterNet and CornerNet
by using a further away from ground truth penalty. These small but effective changes add up to
a model which performs seven times faster than other real-time detectors on the same dataset
and feature extractor. The authors showed that in general that their approach is more accurate
while also being roughly 10 hours quicker in training [81]. This area is being very promising
as more object detectors move to keypoint estimation. This is especially useful in active online
learning settings where we require faster training times to minimise the training time bottleneck
on live systems.

2.7 Summary

Within this chapter, we reviewed the relevant literature and knowledge required for creating
the methodology of the project. We started by discussing the types of learning and learning
techniques like transfer, online and active learning. Many of the modern object detectors use
deep learning techniques to achieve state of the art results, therefore we explore literature
by starting from the perceptron to the structure of neural networks to convolutional neural

38

Chapter 2 2.7. Summary

networks. We also discuss some of the common architectures, which are used as the feature
extractor in modern object detectors. Finally, we discuss the most notable object detectors
from RCNN to Training Time Friendly Networks.

Keypoint estimation seems to be making a resurgence in object detection in recent years
[79, 80, 78, 81]. Allowing us to create composite labels, for example in human pose estimation
we can generate bounding boxes over different parts of the body like a persons head or legs.
These can be seen as composite labels to the greater label of person. We then use these as
the ground truth boxes which training object detectors. Applying composite labels to different
object detectors is important to the greater goal of the project. In which we apply composite
steel defects to object detectors in an active-online learning setting. This is the situation where
the data is given to the model in real-time - hence the online - and due to the complexity of
the data and the need to have humans in the loop. We hope to apply this in an active setting.
Given the challenges of combining these different styles of learning, there is a need to explore
and experiment within the area.

39

Chapter 3

Responsibly Innovated Human
Centric Desgin

Contents

3.1 Introduction . 40

3.2 History of Responsible Innovation and Human-Centric Design and
Why it is Needed . 40

3.3 Developing a Suitable Project Methodology 41

3.1 Introduction

Now that we have established an initial idea for a methodology by find gapes and potential
areas of improvement in chapter 2. We move to how we can be responsible for our research
and put humans at the core of our project by developing a suitable project methodology. We
first discuss the need for this methodology and it was developed by breaking the key areas. We
also show how it differs from a human-centric design. Finally, we develop our human-centric
methodology for this project based on modified software methodologies.

3.2 History of Responsible Innovation and Human-Centric De-
sign and Why it is Needed

Responsible innovation was established by the European Union as part of their framework
programme: ”Framework programmes for Research and Technological Development” [82]. Re-
sponsible innovation aims to ensure that the process of any scientific research or technological
development takes into account any effects and potential impacts on the environment and so-
ciety [83]. This ensures that we as researchers are kept to a high ethical standard by avoiding
any damaging effects of the newly created innovation, working with policymakers to engage
with communities which ensure they know the necessary knowledge for further science educa-
tion, and finally creating a fairer and more inclusive scientific community [84]. Engineering and
Physical Sciences Research Council (EPSRC) adopted the responsible innovation programmes
and commissioned the AREA framework. This will be the focus of this project [84], which
includes the following key areas:

• Anticipation: The main key area of responsible innovation, in which we consider all pos-
sible consequences as a result of created innovation

40

Chapter 3 3.3. Developing a Suitable Project Methodology

• Reflection: Researchers should always be evaluating all aspects of the research process,
this includes the type of data, the process of analysing that data and how we demonstrate
our findings

• Ethics: The process of applying principles such as the General Data Protection Regulation
and other established ethical policies into our work [85].

• Science Education: Research should be accessible and understandable to a large group of
people, while also engaging with the younger generation to inspire new talent

• Equality: By actually engaging equality, diversity and inclusion in the sciences we ensure
that the research process and the final innovation is available and suitable to all. Without
this process it affects the research such the questions we ask or the models we create, this
is because it would only be aimed at a select group of people.

• Open Access: Ensuring that all research is transparent and results are reproducible

• Governance: Institutions that the researchers are apart of must have suitable practices to
promote responsible innovation

• Public Engagement: Before actively engaging with the public - such as deploying research
studies - we must have a justifiable motivation and reflect on a suitable audience for our
research

Human-Centric Design - in the context of research and project management methodology - is the
process of actively involving the human perspective in all stages and aspects of the project [86].
This can consist of adopting an agile methodology where humans are involved in conceptualizing,
developing, testing and deploying solutions. If we come across specific aspects that we find not
to be human-centred we require to move back in the project pipeline to revaluate our steps
and make changes, thus can be adapted into any agile methodology. The results of such an
approach allow for enhancing solution effectiveness and efficiency, well-being improvements, as
well as accessibility and suitability of human use [86]. Which is accomplished by applying
human factor and usability techniques into the core solution.

3.3 Developing a Suitable Project Methodology

Now that we have established responsible innovation and human-centric design, we move to
applying them to our project. Within this section, we show how we apply such principles
to our project management and solution methodology. Anticipation states that we should
be aware of all possible negative consequences of our research. This could potentially be a
challenge as we cannot predict every future consequence of our project. To help with this
we prepared a risk assessment within our project management chapter(5). We split the risk
assessment into personal, technical, general project and responsible innovation risks. Where
each risk has a likelihood, the impact it will have and a possible remedy for the risk. Reflection
and ethics is an iterative process where we will reflect at each step of the project, ensuring
that the steps that we make are suitable for the human-centric approach and responsible. This
is achieved by weekly supervisory meetings and individual reflective step at the end of each
completed step. The different steps of the project are discussed in our schedule section of
project management(5). We will also be following GDPR guidelines as well as our institution
ethical procedures.

41

Chapter 3 3.3. Developing a Suitable Project Methodology

The developed application - as a result of this project - allows for some miner learning
of machine learning. Users can select different datasets, label a few samples and train on
various models. Users can then compare with different model results, all within a graphical
user interface. Thus our goal within the science education principle is to inspire potential
students into driving deeper into object detectors and active online learning. As part of our
methodology, we have a few datasets with one being based on faces and individual parts of faces.
These samples are then trained on different object detectors. A principle goal of this technology
is to generalise over a dataset, just like any machine learning task. Thus our task is to generalise
over all ethnicities and genders while ensuring that there is as little bias as possible. Therefore
we will be evaluating each dataset before adding such a dataset to our project. All datasets
will also be publicly available with no requirement to pay for access. The aim of the project is
for our code to able to be open source and accessible to everyone. We aim to add our code and
how to run the application on a publicly available GitHub page.

42

Chapter 4

Methodology

Contents

4.1 Introduction . 43

4.2 Framework Overview . 44

4.3 Labelling Application . 46

4.4 Object Detectors in the Labelling Application 48

4.5 Summary . 50

4.6 Datasets . 50

4.1 Introduction

Now that we have set out areas to explore in our literature review (chapter 2) and discussed
the need to add human-centric design while also being responsible during the development
process (chapter 3). We move to discussing the methodology of our project. In this chapter, we
discuss the process of how we developed our active online learning framework with the use of
our labelling application, where we break down the various aspects of the different application
windows. Following this in datasets (section 4.6) we analysis our selected face and steel dataset
to test our framework and other object detectors. There are many different datasets that we
could have selected, thus we perform a small evaluation on our datasets to ensure they meet
our project criteria. There are many different types of object detectors that we could select,
fortunately, they all follow the same configuration and environment pipeline. Therefore in
section 4.4 we adapt our labelling framework to support this environment and automatically
generate configuration files for any given object detector. Finally we move to the final stages
of the project and set out to perform our experiments. An experiment simply starts by first
asking a question, within this section we setup some experiment questions and why there is a
need for them to be answered.

43

Chapter 4 4.2. Framework Overview

4.2 Framework Overview

Figure 4.1: Application pipeline starts with some unlabelled dataset and we create a new project
in our application. After loading the dataset into the new project, users can select samples to
label and train a selected object detector. This is an iterative process of labelling samples and
training.

The first stage of this project was to create a labelling application that can support many
different types of image datasets. The goals of this early stage were to create project profiles,
upload an image dataset, have an image viewer and finally select images to then label them. At
the start of the project creation, we generate an XML file which records all our labels for each
image. There is support for multiple objects of any class in a single image, the configuration file
(of that given object detector) will adapt accordingly. This leads us to the second stage of the
project which was to set up our application for use with TensorFlow’s object detection library
[87]. The library has the following steps for training an object detector:

1. Select an object detector from the model zoo [88]

2. Create a TFRecord for both training and testing sets

3. Create a configuration file in the same format as Protocol Buffer [89]

4. Run library train and evaluate scripts in parallel

There are many ways we can prepare our data for a machine learning task and when using
thousands of samples there are a few optimization tricks we can utilise for reading each sample.
During training reading, each file individually can have significant overhead because of the
magnetic head within a hard disk drive (HDD). HDDs needs to seek the start of each file and
jump around the disk finding different parts until the full file has been read. This problem
becomes even worst when we store our files on a remote storage service. This problem results

44

Chapter 4 4.2. Framework Overview

in a drastic slowdown of the training process. Tensorflow proposes one idea to speed up the
reads of samples with its TFRecord. This file stores our data in a protocol buffer object, which
speeds up the training process as all data or a few batches of our data are already stored in
memory. In the situation where we can not fit our data into memory, TFRecord will create
read batches and models train on those batches. This is all done without much effect from the
developer. TFRecord also helps reduce a common problem in deep learning known as GPU
starvation. This is when our GPU is waiting for data to be read or proposed. The data should
already be processed so the GPU can start training our model straight away. As a result of
TFRecord the CPU creates the next batch of samples while the GPU is training on the current
batch.

The configuration files is another important file for the process of training and testing object
detectors in TensorFlow. It consists of all hyperparameters and paths for its associated object
detector. In our framework, users can add new classes at any point in time, even after some
training iterations. This requires us to generate a new configuration file at the start of each
training session as we would need the number of classes, TFRecord paths and the path of the
previous training iteration model. Once we have done at least one training iteration we can
finally test our object detector. The detector will give its best prediction and we can adjust its
prediction box as well as its class prediction if needed within the application.

45

Chapter 4 4.3. Labelling Application

4.3 Labelling Application

Figure 4.2: An illustrated flowchart of the application where window a is the launching main
menu for the application. The user has the choice to create a new project (path 1.x) or lead to
an existing project (path 2.x). If the user creates a new project window 1.b is shown. Users give
the project a name and upload a local dataset. If users want to load an existing project profile
then window 2.b is shown. In whichever case the user is lead to the image viewer (both 1.c and
2.c). From this the user can label samples (1.d or 2.d) or train a selected object detector (1.e
or 2.e)

The labelling application was the first stage of the project. We developed the interface with
Qt and the image processing with OpenCV [90, 91]. All code in this project was developed
in python 3.8. Figure 4.2 illustrates a flowchart of actions the user can do from launching the
application to labelling a sample to training labelled samples.

46

Chapter 4 4.3. Labelling Application

Figure 4.3: The image viewer window is where users will spend most of their time. Users can
select samples to label, train or test models menu a gives basic information about the dataset.
Menu b is for all the active learning tasks like training or testing a model. While in testing all
samples are passed to the model. To see results users click on the image and can adjust labels if
needed. Menu d are triggers for moving back and forth between the pages of the dataset. Users
can also click label selection to move to the labeller window with all currently selected samples

The most important window of the application, the image viewer displays all the images of
the data in a set of pages. The user can configure the image viewer with the use of a YAML
config file. In figure 4.3 there are 10 images in 2 rows but this can be changed to any number,
however greater this number is the slower the application performs. Users can select any number
of samples to label by dragging the mouse of the samples or also individually select samples by
holding the control key, just like any table-based application. The selections are stored across
all pages, this also means that users will need to go back to a page to unselect a sample.

47

Chapter 4 4.4. Object Detectors in the Labelling Application

Figure 4.4: Users can select different brushes (a) and create boxes on the currently selected image
(c). Different labels can be selected or edited (shown in d) as well as remove or add labels with
the buttons from menu f. Once the users are happy they click ”save label”, highlighted as b.

Within the labeller (shown in figure 4.4) users can create, remove or edit labels. Each label
is assigned a colour and a unique identifier (UID). During training sessions the UID is the given
label, this allows users to change label names without removing labels from the object detector
and thus losing previously learnt knowledge. Users can also change colour which updates all
bounding boxes for that given label. There are 2 types of branches for labelling an object in an
image:

• Paint Brush: Users can paint over the area and a bounding box is generated around that
area.

• Point to Point Brush: Users drag their mouse from one point to another. As the distance
between the 2 points grows so does the size of the bounding box.

Once a box has been created users can adjust its size by moving the anchors in the corners
of the box. The position of the box can also be adjusted, once the user is happy they click
”save label” and they automatically move to the next sample in the queue. If there are no more
samples then we move back to the image viewer.

4.4 Object Detectors in the Labelling Application

For each profile in the application an XML file is generated to store both the ground truth
boxes (labelled by a user) and the prediction box given by an object detector. The structure of
the XML for a given image is as follows:

<?xml version=” 1 .0 ” encoding=” utf−8”?>

<image path = ”/ abso lu t e /path/ to / image”>
<image width>w</ image width>

48

Chapter 4 4.4. Object Detectors in the Labelling Application

<image he ight>h</ image he ight>
<r e c t i d : x>
<human labe l led>bool</ human labe l led>
< l a b e l> l a b e l o f ob j e c t</ l a b e l>
<co l our>co l our o f ob j e c t</ co l our>
<topLe f t>(x , y)</ topLe f t>
<bottomRight>(x , y)</bottomRight>
<width>width o f box</width>
<he ight>he ight o f box</ he ight>
</ r e c t>
.
.
.
</ image>

When starting a training session we iterate over the XML file, getting only the human labelled
annotations and generating a TFRecord. If we have done some training sessions before the
current session then we fine-tune otherwise we start with random weights on a fresh object
detector. We config this by generating a configuration file. There are 3 types of learning
supported by the object detection library:

• Classification: standard supervised learning on images where we label the whole image to
a given label. We start from random weights

• Detection: The main type of learning for our task, where we localize and classify each
object in an image. We start from random weights

• Fine-Tune: We load the weights of a given model path. The task of the object detecter
depends on what the loaded model was trained on.

For our purposes only the first training session is defined as detection while all further sessions
are fine-tuned, to ensure we keep the previously learned knowledge. TensorFlow provides
many different types of object detectors in their zoo, however not all support detection or
classification. For example, ResNet based CenterNet only support classification and fine-tuning
while HourGlass based CenterNet supports detection and fine-tuning.

When users run an object detection test we load all our data into a TFRecord and load
the model of the previous training session. The object detector produces several predictions
and we apply the post-processing technique NMS to prune similar predictions [77]. After which
we save the rest of the predictions to the project’s XML file. If there is a prediction when
loading the image in the labeller, this will also get displayed to the user. Allowing users to
make adjustments if needed. In the image viewer there are 3 trick indicators for the type of
annotation:

• Green Tick: Indicates that the image is human labelled and is consisted of ground truth.

• Yellow Tick: Indicates that the boxes are a prediction from an object detector and that
the confidence in its prediction is good.

• Red Tick: Low confidence prediction from the object detector. These images are suggested
to be labelled by a user.

49

Chapter 4 4.5. Summary

4.5 Summary

The deliverable of this project is a labelling application where we apply object detectors in an
active learning setting. The application has support for many file types and any size image.
The general propose use of the application allows for testing on various types of imagery like
surface texture detection or composite labelling datasets. With such an application we can
perform active online learning experiments on object detectors.

We started this chapter by giving a general overview of the application and its two purposes
of its use: labelling objects and training models based on those labelled objects. We then further
brake these purposes down in their sections; Labelling Application (section 4.3) and Object
Detectors in the Labelling Application (section 4.4). In labelling application, we demonstrated
how a user creates a project, loads a dataset of choice and finally starts labelling. Our labeller
consists of two types of brushes and how labels can be edited or removed. Useful for when
specific labels can have multiple names. In section 4.4 we showed the process of applying the
object detection environment to the application as well as the structure of how we store and
use the annotations. Finally, we gave an overview of the datasets used for our experiments.

4.6 Datasets

Figure 4.5: Layout of different keypoint locations on various face datasets [92]

Labelled Face Parts in the Wild (LFPW) and Severstal Steel Defect Detection are the 2
datasets being used for our experiments [4, 5]. LFPW was used for our composite label
experiments where we train object detectors on faces to then transfer that knowledge to
also detect facial features. The result is a detector capable of detecting faces and the
composite labels of a face like eyes and noses. This is a common problem within steel
defection where there are many classes of defects that also consist of subclasses of small
defects. Unfortunately, we did not have access to a steel dataset with composite labels. The
steel dataset is still very useful due to the challenge of each category of class looking sim-
pler to each and the high inter-class variance due to defects consisting of a set of smaller defects.

Keypoint estimation datasets are especially useful for composite datasets as they typically

50

Chapter 4 4.6. Datasets

have keypoints in many areas of an object. We can hand-select these points to build a box to
represent a composite label. For example, in LFPW there are 4 key points for the nose and
therefore we wrap a bounding box around those points. Figure 4.5 displays various different
keypoint datasets for faces. We require a dataset that has enough detail to create multiple
composite labels while also have many different facial expressions and ethnic groups. LFPW
is a reasonable choice as it had enough information to create bounding boxes around different
fascial features while - as the name suggests - have different faces in various contexts. LFPW is
also open source while some other datasets like XM2VTS are not [93]. The authors of LFPW
gathered 3000 faces by using text queries on websites such as Google, Flicker and Yahoo. The
35 ground truth key points were labelled by workers from Amazon Mechanical Turk (MTurk).
While using this service is beneficial for labelling datasets, people can still make mistakes. The
authors considered this and each keypoint was labelled by three different workers and they
took the average position as the ground truth.

Figure 4.6: These charts show the number of defects for each class over both the training and
testing sets. [5]

Figure 4.7: Visualization of each defect in the dataset. [5]

The only publicly available steel defect detection dataset that we could is the Severstal

51

Chapter 4 4.6. Datasets

dataset. Originally used for a Kaggle competition [5], it consists of 12,568 steel panels. Where
each panel can have one or more of the four types of defects, 5902 of which do not have any
defects. Figure 4.6 shows the number of defects for each class over both training (left chart)
and testing sets (right chart). We also show the 4 different types of defects by figure 4.7. Notice
they are contours and not bound boxes and so for each contour, we generate a bounding box.
This can be an issue for some defects where they are long strips (such as with defect 3) as
opposed to large areas like defect 4. Defect 3 is also oversampled in the dataset but we will not
be balancing the dataset or taking even samples. This is because during the production of the
steel some defects are more common than others. This is then a natural bias of the dataset and
we want our models to generalized over real-world production. We use both these datasets for
use in our object detection experiments to not only test object detectors for their given domain
but also in an active online learning setting.

52

Chapter 5

Project Management

Contents

5.1 Introduction . 53

5.2 Project Development Methodology . 53

5.3 Schedule . 54

5.4 Risk Assessment . 56

5.5 Summary . 59

5.1 Introduction

Planning our project and how we manage it are instrumental to the success of the project. We
first create a project management methodology, where we apply human-centric design to an
agile development cycle. Allowing us to fix any arising problems quickly with the added benefit
of not needing to go back on previously completed stages or project milestones. Secondly, we will
discuss the project schedule, which embraces the selected project methodology by its iterative
nature. We will also set out our major and secondary milestone. By creating this schedule
we perform an initial reflection of the planned stages and aspects to ensure that we innovate
responsibly and that the proposal (that was discussed in chapter 4) follows a human-centric
design. Finally, we will evaluate the project and initial proposal further by constructing and
performing a risk assessment. This assessment is split into general, technical, personal and
responsibly innovative risks. Where each risk is evaluated based on a likelihood and negative
impact score.

5.2 Project Development Methodology

The underlining principle of this project is to have a human-centric focus while also ensuring
that we research, develop, test and responsibly deploy our project solutions. This requires us
to always be thinking about these principles at every stage of the project. Which naturally
deduct to an iterative process and therefore an obvious approach is to an agile methodology,
this includes but not limited to:

• Agile Scrum Methodology [94]

• Lean Software Development [95]

53

Chapter 5 5.3. Schedule

• Extreme Programming (XP) [96]

• Dynamic Systems Development Method(DSDM) [97]

• Feature Driven Development (FDD) [98]

Each of these methodologies has a focus on software development, thus any of these approaches
will require some modification for our experiment stages. Deploying our experiments requires
a rapid methodology as our next few experiments are completely dependent on the results of
the previous experiment. As well as the experiments we also create an active online learning
framework with a graphical user interface, which allows us to label samples and perform some
training of different object detectors. It will be relatively linear with only miner feedback
changes during these early stages of the project. Due to these challenges in both early and
late stages, we will be using a modified version of extreme programming, this is because of its
continuous delivery by its responsiveness to ever-changing situations in the project. This is
useful for experiments stages but also adapts well to situations where there are few iterations
such as in the active online learning framework stages.

Originally introduced by Ken Beck in 1990, extreme programming allows us to create higher
quality software with each iteration while also being adaptable to changes in the project as they
arise. The approach is designed to have rapid feedback and response to that feedback as quickly
as possible. We will have a weekly supervisory meeting where we will be able to adapt to the
feedback in these meetings quicker than other methodologies. As this approach uses a test-driven
principle we can change different parts of the experiment depending on previous experiments.

5.3 Schedule

Our schedule starts from 29th June to the 30th of September 2020 and is split amount 4 stages:

• Stage 1: We develop a labelling application that can support any image dataset.

• Stage 2: Setup a machine learning environment and the ability to train and test different
object detectors.

• Stage 3: Online and Active learning experiments along with object detection experiments
on composite label datasets.

• Stage 4: Writing the dissertation.

The end of each stage acts as our milestones. At which we reflect and evaluate our work to
ensure we are on the track of the schedule and following the human-centred methodology. Each
stage is further broken down into tasks that we must complete by their associated end date.
Our schedule follows a linear path for the first 2 stages, then stages 3 and 4 are set in parallel.
This is because we first build our labelling application and added machine learning support
before we move into the iterative process of experimentation. To help in having better use of
our time we will be preparing and writing the dissertation while training sessions are running.

54

Figure 5.1: Project Schedule split into the four different stages

Chapter 5 5.4. Risk Assessment

5.4 Risk Assessment

To conduct our risk assessment we first establish potential risks in 4 areas:

• Personal Risks: Risks that affect us individually and as a result harm the process of the
project. Examples include sickness or failing to follow a schedule.

• Technical Risks: Risks with some form of technical elements such as badly labelled dataset
or bugs in libraries.

• Project Risks: These are general risks or risks that do not fit into other risk categories.
Risks like mismanagement of planning or resources.

• Responsible Innovation Risks: Identified areas of the project that could potentially be a
risk of breaking one or more areas of responsible innovation.

For each potential risk, we state how it could affect the project and give a solution. We also give
each risk a likelihood of happening and an impact on the project score. The resulting score is
the average of the 2 scores. Finally, we order the risks in descending order of the results score.
This shows us the more important risks that we should be especially aware of.

56

Legend: Personal Risks
Technical Risks
Project Risks
Responsible Innovation Risks

Risks
Risk Affects on
Project

Solution Likelihood Impact
Result
Score

Fixing bugs delay
progress

Failing to meet
project requirements
and milestones

Dedicate days for minor
bugs and prioritise major bugs

80 80 80

Failing to keep
track of schedule

Failing to meet
project requirements
and milestones

Follow a project development
methodology and prioritise tasks

80 70 75

Sickness
Results in delays
and potentially
missing deadlines

Task regular breaks, follow
covid-19 guidelines

50 90 70

Library was found not to be
suitable due to failing key areas
of responsible innovation

Results in failing
one of the
underlining
principles of
the project

Use backup
library

50 90 70

PC hardware was not suitable
for the type of models that
we want to train

Fails to
complete
a main
requirement
of the project

Use models that are
computationally smaller
or use Google Colab

70 70 70

Specific task was found to be
harder than what was planned

Results in
delays and
potentially
missing of
deadlines

Add extra time for each task
than we originally think it will take

65 70 67.5

Dataset is not ethically sound or
fails a key area of responsible innovation

Not being
able to use
the dataset
for the project,
results in
failing to
train models

Have backup
datasets in place

70 60 65

Not prioritising
tasks

Lose scope
of project,
resulting
in not
completing
important tasks

Use schedule and use a priority
based to do list

60 60 60

Unexpected anomalies in tasks,
such as bugs in libraries

Delays tasks
which could
mean some
tasks are
not completed

Add extra time to each task
than otherwise thought would take

40 70 55

Loss of Data
Will require
us to restart
the project

Backup with an online storage
or version control service

20 90 55

Specific task was found to
not be human-centric

Affects project
in a number of
ways including
strong AI bias
to failing to
meet project
requirements

Evaluate each task before it
being completed and reflect
on the task after completion

20 70 55

Dataset Errors
Poor object
detection
performance

Use preprocessing and
postprocessing techniques

50 20 35

Chapter 5 5.5. Summary

5.5 Summary

In this chapter, we presented how the project was managed and originally planned. We first
discussed the need for a project development methodology by modifying extreme programming
to work with our human-centric design. We then created a schedule with individual tasks
grouped into stages. The end of these stages is the major milestones of the project. Finally,
we performed a risk assessment to ensure that if anything was to happen that could negatively
impact our plan, there was a backup plan. We also ordered our risk assessment by importance
to make special attention to risks that have the largest impact or the most likely to occur.

59

Chapter 6

Evaluation

Contents

6.1 Introduction . 60

6.2 Online and Active Learning Experiments 60

6.3 Object Detector Experiments . 62

6.1 Introduction

In this chapter, we investigate the use of object detectors in an active setting. We use a compos-
ite label and highly intra-class datasets for these experiments and all run on an Nvidia GeForce
GTX 1070. The chapter is split into our active learning experiments and object detection ex-
periments, for each given experiment we show our results and evaluate the performance. Due
to the many challenges of combining different learning scenarios with the added complexity of
focusing on object detectors, we choose to split the problem topic into their sections.

6.2 Online and Active Learning Experiments

Figure 6.1: Each colour represents a different training session. For each new session we add
10 new samples to the training pool. These samples are selected based on the average losses
confidence class.

We first perform an active online learning experiment where random samples are given to the
object to simulate real-life data retrieval. The random nature is sightly wrong to real-life

60

Chapter 6 6.2. Online and Active Learning Experiments

production lines like in steel. We do not have access to data on its distribution through time,
which can be found in a live scenario, therefore it is impossible for us to know. After a few of
the training sessions, we applied an active element to the sessions, where sample classes that
had the average lowest confidence score. As we already had the labels made before the start
of the training sessions, our sampling acted as the oracle. This reduces the training time as
we do not need to hand label or constantly need to monitor the training. Figure 6.2 illustrates
the training loss of our first experiment. For each training session, we add 10 new samples to
the training set. We select these 10 new samples based on the average confidence score of the
classes. The figure shows the first 5 out of 10 sessions. As we get new samples added the pool,
a large spike representing a large loss. Over time we should see the spike decrease, however, in
our experiments, the spike is roughly the same. There are a few hypotheses for this:

• We used the confidence based on softmax. As we found in the literature softmax tends to
be overconfident. Therefore we may be given the model wrong samples to be training on

• Object detectors are large/complex models and require a lot more data and time than we
provided in the experiments. This could result in overfitting to the data.

Figure 6.2: Overview of the active learning experiments with 2 different models and 4 types of
training data.

Figure 6.2 we show all 8 of our active learning experiments. We used 2 meta-architectures: SSD
and Faster RCNN. We choose to test a 1 stage and 2 stage model to test the trade-off between
accuracy over speed of training time. We also broke up the datasets into a single class and
a multi-class variant. For the LFPW dataset, we generated the bounding boxes of a face by
getting the largest and smallest points, which represents the bottom right corner and the top
left corner of a box. For parts of the face, we generated boxes based around the eyes, noses
and mouths. The single class steel defect dataset consisted of only the first class of defects.
As shown in table 6.1 our best performing object detector was the SSD with ResNet on the
single class of face, which outperformed even the Faster RCNN with the same configurations
and training data. This could be an anomaly but this model also performed well in the object
detection experiments. We assume that due to how large these 2 stage detectors are, it was
underfitting to a simple face detection task.

61

Chapter 6 6.3. Object Detector Experiments

Dataset Model mAP mAP50 Training Time
(Hours)

Faces SSD with ResNet 67.48 67.84 11

Parts of Faces SSD with ResNet 19.42 26.97 12

Single Class Steel Defect Detection SSD with ResNet 11.42 14.81 28

Multi Class Steel Defect Detection SSD with ResNet 3.97 9.5 28

Faces Faster RCNN with ResNet 55.79 56.21 26

Parts of Faces Faster RCNN with ResNet 26.3 30.38 26

Single Class Steel Defect Detection Faster RCNN with ResNet 12.1 12.86 32

Multi Class Steel Defect Detection Faster RCNN with ResNet 7.10 8.24 32

Table 6.1: Final results of the active learning experiments.

6.3 Object Detector Experiments

All of the steel defect detection experiments performed poorly overall. However, the detections
are still accurate in their placement but most predictions had very low confidence. As
confidence is used to remove some predictions, many accurate ones where removed. This can
be edited by lowing the threshold but we wanted to keep all our experiments consistent with
each other for a fairer comparison among methods.

Training time is heavily important in online learning scenarios as there will be a consistent
flow of data and thus the bottleneck is the training time. Many approaches stop production or
retrieval of data to train. This has the obvious drawback of some finance loses, there is also
the drawback of not learning and therefore adapting to current situations that may naturally
occur. For example if a steel mile is not cleaned then dust and other artefacts go onto the steel.
The object detector would need to adapt to this in real time. The detector would only learn to
adapt to these artefacts when training starts. Therefore it is desired to have a model that can
train as quickly as possible. In the object detection experiments we focus on testing composite
labels and highly intra class datasets. We found the best preforming detector to be EfficientDet
D1 with a resolution of 640x640 and an mAP score of 71.13. Its training time was also one of
the best due to how computationally efficient the model is. Our fastest performing detector was
the SSD with MobileNet, this was not a surprise due to the feature extractor having excellent
speed complexity.

62

Chapter 6 6.3. Object Detector Experiments

Dataset Meta-Architecture Base Model Resolution mAP
Training Time

(Hours)

Faces Faster RCNN ResNet50 640x640 92.75 2

Parts of Faces Faster RCNN ResNet50 640x640 35.54 2

Single-Class Steel
Defect Detection

Faster RCNN ResNet101 1024x1024 15.13 7

Multi-Class Steel
Defect Detection

Faster RCNN ResNet101 1024x1024 9.97 7

Single-Class Steel
Defect Detection

Faster RCNN ResNet50 640x640 13.21 4

Multi-Class Steel
Defect Detection

Faster RCNN ResNet50 640x640 8.17 4

Faces SSD MobileNet 640x640 94.91 1

Parts of Faces SSD MobileNet 640x640 34.13 1

Single-Class Steel
Defect Detection

SSD MobileNet 640x640 5.71 2

Multi-Class Steel
Defect Detection

SSD MobileNet 640x640 3.94 2

Faces SSD ResNet50 640x640 93.71 3

Parts of Faces SSD ResNet50 640x640 32.54 3

Single-Class Steel
Defect Detection

SSD ResNet50 640x640 7.18 4

Multi-Class Steel
Defect Detection

SSD ResNet50 640x640 5.71 4

Faces EfficientDet D1 640x640 71.13 3

Parts of Faces EfficientDet D1 640X640 64.59 3

Single-Class Steel
Defect Detection

EfficientDet D1 640x640 11.71 4

Multi-Class Steel
Defect Detection

EfficientDet D1 640x640 5.13 4

Table 6.2: Object Detection Experiment Results with 4 types of training sets 3 types of object
detectors.

63

Chapter 7

Conclusions and Future Work

Contents

7.1 Conclusions . 64

7.2 Future Work . 65

7.1 Conclusions

In this thesis, we present an active learning framework that can use any imagery-based datasets.
Users can create dataset-specific profiles and label any number of images at once. Labels can
be edited without the need to configure object detectors. Users can select any of the object
detectors provided by TensorFlow’s model zoo. They can also configure different parts of the
application like the text of all buttons or the number of images being displayed by the image
viewer in a given page.

The second part of the project was to explore object detectors in an active-online learning
setting on 2 datasets; ”Severstal: Steel Defect Defection” and ”Labelled Face Parts in the
Wild” (LFPW). LFPW is a keypoint estimation dataset which has 35 labelled points around
faces in many different backgrounds and facial expressions. We use these labelled points to
generate ground truth boxes for eyes, noses and mouths. We then use this dataset to predict
composite labels on various object detectors like SSD and Faster RCNN. The performance
and training time of these methods are very dependent on the feature extractor. We test our
models on ResNet and MobileNet to measure the trade-off between training time and accuracy,
an important attribute of online learning.

We first started this thesis by introducing the background literature by exploring deep
learning. We first introduced neural networks and built towards modern object detectors.
Many of which use a feature extractor to learn a representation of the data. We explore the
most notable extractors and object detectors. Following the literature, we introduce the human-
centric design and later adjust a software development methodology with this new design. In
Chapter 4 we introduced the main deliverable of the project as well as the datasets used for our
experiments. In which we found that both SSD and Faster RCNN with ResNet50 are the best
for our composite label experiments (1% difference). While our quickest trainable model was
EfficientDet D1 with an mAP of 64.59.

64

7.2 Future Work

The current approach to steel defect detection is to use object detection, this is where we get
regions of the image and make predictions on those regions. However, the defects found in steel
does not fit well in a bounding box. This meant that our ground truth boxes have many empty
regions. This resulted in a more difficult classification task as we are - in general - pointing to
an area where there is a defect as opposed to directly feeding the defect pixels into our model.
An instance segmentation approach seems more reasonable as we can classify the individual
pixels to get a natural outline of the defect. This requires a larger and more complex labelling
process, due to the requirement of labelling each pixel. We would need to adjust our application
for pixel-wise labelling as we already have pixel brush mechanics.
All object detectors in TensorFlow’s zoo uses non-maximum suppression (NMS). This is a
problem for composite labelling where you have labels overlapping other labels. There is no
option to remove this without major editing of the source code. Therefore the construction of
our models would be required. Another area to explore could involve decreasing the training
time with key point estimation methods. Training time friendly networks seem promising in
there training speeds while still able to have similar performance to 1 stage detectors [81]

Bibliography

[1] Hatcher W, Yu W. A Survey of Deep Learning: Platforms, Applications and Emerging
Research Trends. IEEE Access. 2018 04;PP:1–1.

[2] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Con-
volutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger
KQ, editors. Advances in Neural Information Processing Systems 25. Curran Asso-
ciates, Inc.; 2012. p. 1097–1105. Available from: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[3] Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models
are Few-Shot Learners. arXiv. 2020;.

[4] Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N. Localizing Parts of Faces Using a
Consensus of Exemplars. 24th IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2011;.

[5] Severstal. Severstal, editor. Severstal: Steel Defect Detection. kaggle; 2019. Available from:
"https://www.kaggle.com/c/severstal-steel-defect-detection".

[6] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object
detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition; 2014. p. 580–587.

[7] Lemarechal C. Lemarechal C, editor. Cauchy and the Gradient Method; 1847.

[8] Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, Schaul T, et al. Learning to
learn by gradient descent by gradient descent. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems. Curran Associates Inc.; 2016. p.
39883996.

[9] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation. 1997;.

[10] Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory.
1982;.

[11] Li Z, Hoiem D. Learning without Forgetting. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2016;p. 2935–2947.

[12] Koul A, Ganju S, Kasam M. Practical Deep Learning for Cloud, Mobile and Edge: Real-
World AI and Computer Vision Projects Using Python, Keras and TensorFlow. O’Reilly
Media, Incorporated; 2019. Available from: https://www.oreilly.com/library/view/

practical-deep-learning/9781492034858/.

66

[13] Bengio Y. Bengio Y, editor. Public Lecture: Towards Deep Learning 2.0. IEEE
WCCI 2020; 2020. Available from: https://2020.wcci-virtual.org/presentation/

public-lecture/public-lecture-towards-deep-learning-20.

[14] Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. Backpropagation and the
brain. Nature Reviews Neuroscience. 2020;Available from: https://doi.org/10.1038/

s41583-020-0277-3.

[15] Bengio Y, Bastien F, Bergeron A, BoulangerLewandowski N, Breuel T, Chherawala Y,
et al. Deep Learners Benefit More from Out-of-Distribution Examples. Journal of Machine
Learning Research - Proceedings Track. 2011 11–13 Apr;15:164–172. Available from: http:
//proceedings.mlr.press/v15/bengio11b.html.

[16] Angluin D. Queries and Concept Learning. Machine Language. 1988;p. 319–342. Available
from: https://doi.org/10.1023/A:1022821128753.

[17] Angluin D. Queries Revisited. Theoretical Computer Science. 2004;313.

[18] Wang L, Hu X, Yuan B, Lu J. Active learning via query synthesis and nearest neighbour
search. Neurocomputing. 2015;p. 426–434.

[19] Lang K, Baum E. Query learning can work poorly when a human oracle is used; 1992. .

[20] Chen SF, Rosenfeld R. A survey of smoothing techniques for ME models. IEEE Transac-
tions on Speech and Audio Processing. 2000;.

[21] Dagan I, Engelson SP. Committee-Based Sampling For Training Probabilistic Classifiers.
In: In Proceedings of the Twelfth International Conference on Machine Learning. Morgan
Kaufmann; 1995. p. 150–157.

[22] Lewis DD, Gale WA. Lewis DD, editor. A Sequential Algorithm for Training Text Classi-
fiers. Springer, London; 1994.

[23] Hoi SCH, Sahoo D, Lu J, Zhao P. Online Learning: A Comprehensive Survey. arXiv.
2018;.

[24] Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press; 2016.

[25] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015
Jan;61:85117. Available from: http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[26] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;Available from: https:

//doi.org/10.1038/nature14539.

[27] FISHER RA. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROB-
LEMS. Annals of Eugenics. 1936;7(2):179–188. Available from: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x.

[28] Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013;35(8):1798–
1828.

[29] Marblestone AH, Wayne G, Kording KP. Toward an Integration of Deep Learning and
Neuroscience. Frontiers in Computational Neuroscience. 2016;10:94. Available from:
https://www.frontiersin.org/article/10.3389/fncom.2016.00094.

[30] Burnham K, Anderson D. Model Selection and Multimodel Inference. A Practical
Information-theoretic Approach. 2004 01;.

[31] Rosenblatt F. A Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory.
1957;.

[32] Narayan S. The generalized sigmoid activation function: Competitive supervised learning.
Information Sciences. 1997;99(1):69 – 82. Available from: http://www.sciencedirect.

com/science/article/pii/S0020025596002009.

[33] Nwankpa C, Ijomah W, Gachagan A, Marshall S. Nwankpa C, editor. Activation Functions:
Comparison of trends in Practice and Research for Deep Learning. arXiv; 2018.

[34] Agarap AF. Agarap AF, editor. Deep Learning using Rectified Linear Units (ReLU). arXiv;
2018.

[35] Maas AL. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In: in ICML
Workshop on Deep Learning for Audio, Speeh and Language Processing; 2013. .

[36] Boltzmann L. Studien ber das Gleichgewicht der lebendigen Kraft zwischen bewegten
materiellen Punkten; 1868. .

[37] Gibbs JW. Elementary Principles in Statistical Mechanics: Developed with Especial Ref-
erence to the Rational Foundation of Thermodynamics. Cambridge Library Collection -
Mathematics. Cambridge University Press; 2010.

[38] Gao B, Pavel L. On the Properties of the Softmax Function with Application in Game
Theory and Reinforcement Learning; 2017.

[39] Kleppmann M. Designing Data-Intensive Applications: The big Ideas Behind Reliable,
Scalable, and Maintainable Systems. O’Reilly; 2017.

[40] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).
vol. 1; 2005. p. 886–893 vol. 1.

[41] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 1998;86(11):2278–2324.

[42] Edwards M. Representation Learning in Irregular Domains; 2018.

[43] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image
Recognition; 2014.

[44] Johnson J. CNN Architecutres. University of Michigan; 2019.

[45] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV).
2015;115(3):211–252.

[46] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition; 2015.

[47] Krizhevsky A. Learning Multiple Layers of Features from Tiny Images. University of
Toronto. 2012 05;.

[48] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications; 2017.

[49] Xie S, Girshick R, Dollr P, Tu Z, He K. Aggregated Residual Transformations for Deep
Neural Networks; 2016.

[50] Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions; 2016.

[51] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift; 2015.

[52] Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural
networks by preventing co-adaptation of feature detectors; 2012.

[53] Wang D, Shang Y. A new active labeling method for deep learning. In: 2014 International
Joint Conference on Neural Networks (IJCNN); 2014. p. 112–119.

[54] Wang K, Zhang D, Li Y, Zhang R, Lin L. Cost-Effective Active Learning for Deep Im-
age Classification. IEEE Transactions on Circuits and Systems for Video Technology.
2017 Dec;27(12):25912600. Available from: http://dx.doi.org/10.1109/TCSVT.2016.

2589879.

[55] Ren P, Xiao Y, Chang X, Huang PY, Li Z, Chen X, et al.. A Survey of Deep Active
Learning; 2020.

[56] Hossain HMS, Roy N. Active Deep Learning for Activity Recognition with Context Aware
Annotator Selection. KDD ’19. New York, NY, USA: Association for Computing Machin-
ery; 2019. p. 18621870. Available from: https://doi.org/10.1145/3292500.3330688.

[57] Simoni O, Budnik M, Avrithis Y, Gravier G. Rethinking deep active learning: Using un-
labeled data at model training; 2019.

[58] Houlsby N, Huszr F, Ghahramani Z, Lengyel M. Bayesian Active Learning for Classification
and Preference Learning; 2011.

[59] Holub A, Perona P, Burl M. Entropy-based active learning for object recognition; 2008. p.
1–8.

[60] Joshi AJ, Porikli F, Papanikolopoulos N. Multi-class active learning for image classification.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009. p. 2372–
2379.

[61] Kapoor A, Grauman K, Urtasun R, Darrell T. Gaussian Processes for Object Categoriza-
tion. International Journal of Computer Vision; 2010. .

[62] Wang RJ, Li X, Ling CX. Pelee: A Real-Time Object Detection System on Mobile Devices;
2018.

[63] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals
and Linear Bottlenecks; 2018.

[64] Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, et al. A Survey of Deep Learning-Based
Object Detection. IEEE Access. 2019;7:128837128868. Available from: http://dx.doi.

org/10.1109/ACCESS.2019.2939201.

[65] Girshick R. Fast R-CNN; 2015.

[66] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks; 2015.

[67] Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object
Classes (VOC) Challenge. USA: Kluwer Academic Publishers; 2010. Available from:
https://doi.org/10.1007/s11263-009-0275-4.

[68] Uijlings J, Sande K, Gevers T, Smeulders A. Selective Search for Object Recognition.
International Journal of Computer Vision. 2013 09;104:154–171.

[69] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time
Object Detection; 2015.

[70] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. SSD: Single Shot MultiBox
Detector. Lecture Notes in Computer Science. 2016;p. 2137. Available from: http://dx.

doi.org/10.1007/978-3-319-46448-0_2.

[71] Ting KM. In: Sammut C, Webb GI, editors. Confusion Matrix. Boston, MA: Springer US;
2017. p. 260–260. Available from: https://doi.org/10.1007/978-1-4899-7687-1_50.

[72] Olson DL, Delen D. Advanced Data Mining Techniques. 1st ed. Springer Publishing
Company, Incorporated; 2008.

[73] Goutte C, Gaussier” E. A Probabilistic Interpretation of Precision, Recall and F-Score,
with Implication for Evaluation. In: Advances in Information Retrieval. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2005. p. 345–359.

[74] Padilla R, Netto SL, da Silva EAB. A Survey on Performance Metrics for Object-Detection
Algorithms. In: 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP); 2020. p. 237–242.

[75] Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, et al.. Microsoft COCO:
Common Objects in Context; 2014.

[76] Everingham M, Gool L, Williams CK, Winn J, Zisserman A. The Pascal Visual Object
Classes (VOC) Challenge. USA: Kluwer Academic Publishers; 2010. Available from:
https://doi.org/10.1007/s11263-009-0275-4.

[77] Rothe R, Guillaumin M, Van Gool L. Non-Maximum Suppression for Object Detection by
Passing Messages between Windows. vol. 9003; 2015. .

[78] Newell A, Yang K, Deng J. Stacked Hourglass Networks for Human Pose Estimation; 2016.

[79] Law H, Deng J. CornerNet: Detecting Objects as Paired Keypoints; 2018.

[80] Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q. CenterNet: Keypoint Triplets for Object
Detection; 2019.

[81] Liu Z, Zheng T, Xu G, Yang Z, Liu H, Cai D. Training-Time-Friendly Network for Real-
Time Object Detection; 2019.

[82] Commission E. Options for Strengthening Responsible Research and Innovation - Report of
the Expert Group on the State of Art in Europe on Responsible Research and Innovation;
2013.

[83] von Schomberg R. 3. In: A Vision of Responsible Research and Innovation. John Wiley
and Sons Ltd; 2013. p. 51–74. Available from: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781118551424.ch3.

[84] Orbit. The Keys of Responsible Research and Innovation; 2020. Available from: https:

//www.orbit-rri.org/resources/keys-of-rri/.

[85] Voigt P, Bussche Avd. The EU General Data Protection Regulation (GDPR): A Practical
Guide. 1st ed. Springer Publishing Company, Incorporated; 2017.

[86] Ergonomics of human-system interaction - Part 210: Human-centred design for interactive
systems. International Organization for Standardization; 2019.

[87] Google. TensorFlow Object Detection API; 2020. Available from: "https://github.com/
tensorflow/models/tree/master/research/object_detection".

[88] Google. TensorFlow 2 Detection Model Zoo; 2020. Available from: "https:

//github.com/tensorflow/models/blob/master/research/object_detection/

g3doc/tf2_detection_zoo.md".

[89] Google. Protocol Buffers; 2020. Available from: "https://developers.google.com/

protocol-buffers".

[90] Qt. Qt; 2020. Available from: "https://www.qt.io/".

[91] Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools. 2000;.

[92] Sagonas C, Antonakos E, Tzimiropoulos G, Zafeiriou S, Pantic M. 300 Faces In-The-Wild
Challenge: database and results. Image and Vision Computing. 2016 01;47.

[93] Messer K, Matas J, Kittler J, Luettin J, Maitre G. XM2VTSDB: The Extended M2VTS
Database. In: Second International Conference on Audio and Video-based Biometric Person
Authentication; 1999. Available from: ’http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
’.

[94] Carvalho B, Henrique C, Mello C. Scrum agile product development method -literature
review, analysis and classification. Product: Management and Development. 2011 01;9:39–
49.

[95] Poppendieck M, Poppendieck T. Lean Software Development: An Agile Toolkit. Addison-
Wesley; 2003. Available from: https://www.safaribooksonline.com/library/view/

ean-software-development/0321150783/.

[96] Beck K, Andres C. Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional; 2004.

[97] Agile Business Consortium. The DSDM Agile Project Framework (2014 Onwards);
2014. Available from: https://www.agilebusiness.org/resources/dsdm-handbooks/

the-dsdm-agile-project-framework-2014-onwards.

[98] Palmer SR, Felsing M. A Practical Guide to Feature-Driven Development. Pearson Edu-
cation; 2001.

