I graduated in 2005 from the department of Materials and Processing Engineering at the ENSIACET (Institut National Polytechnic, Toulouse, France). During my undergraduate studies, I took part in several scientific research projects related to the theme of science for fine arts through which I grew a real enthusiasm for materials investigation. One of my most significant research experience took place at the C2RMF (Le Louvre museum, Paris) where I completed a comparative study on the artificial acid-triggered ageing of industrial lead-glass and buried archaeological samples of church stained window and ceramic plates.
I carried on with my postgraduate studies in Montreal (Canada), where I completed a Fastrack (Master/PhD) program in the Department of Materials Engineering of McGill University, under the supervision of Prof. George Demopoulos, head of the Hydrometallurgy research team. My research project led to the development of a low-cost and scalable batch process for the synthesis of high surface area anatase and rutile TiO2 products. Later on in my PhD I focused on the development of water-based TiO2 pastes for the preparation of photoanodes used in Dye-Sensitized Solar Cells. During my time at McGill, I also worked on developing skills in materials characterization and gained particular expertise in using advanced analytical instruments such as FEG-SEM, XRD, BET surface area/porosimetry, Raman spectroscopy, etc… My experience at McGill University was complemented with teaching activities as well as… playing ice hockey!
I moved back to Europe in July 2011 and started to work as a Technology Transfer Fellow of SPECIFIC IKC. Since the beginning of this new adventure, I have taken part into various projects as a member of the photovoltaic team (PV) while contributing to the development of photocatalytic surfaces for water purification applications. In the PV team, my research activities first focused on the use of TGA/GCMS analytical instruments to optimize the thermal curing of various types of conductive and corrosion inhibiting organic coatings formulated for steel substrates (in collaboration with our Strategic Partner TataSteel). I continued developing of TiO2 aqueous pastes and colloid formulations applicable to the preparation of mesoporous and compact thin TiO2 layers used in 3rd generation photovoltaic devices. I tried to prioritise the development and application roll-to-roll compatible deposition processes (NIR-assisted curing, sintering, platinization, automated bar coating of liquid metal oxide suspensions, etc.) in view of up-scaling the fabrication of photoanodes used in Solid-State DSCs and lead halide organometallic perovskite-based solar cells prepared both for glass and metal substrates.
My current research activities focus on the development of materials and low-C footprint/high production yield manufacturing process for the fabrication of metal oxide semiconductor thin films used in 3rd Generation Photovoltaics. This involves the formulation of colloidal precursors which are compatible with glass and metal substrates and can be stabilised at low temperature using fast UV-sinter stabilisation methods. A more recent aspect of this work theme aims to develop materials with added properties which offer better interface compatibility with lead-halide perovskite materials and can contribute to better processability and an increased life-time of MAPI perovskite solar cells. I also investigate the chemical assembly of nanoparticles in aqueous solutions, a method enabling the preparation of wet precursors used for the fabrication of high surface area macroporous photocatalytic coatings. My research activities also involve extensive materials characterization using FEG-SEM, surface area/porosimetry and X-Ray diffraction analyses of powders and thin films across various collaborative R&D projects.