Wang, F. (2022). Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds. Journal of the European Mathematical Society, 25(9)
Bogachev, V., Shaposhnikov, A., & Wang, F. (2022). Sobolev–Kantorovich inequalities under CD(0,∞) condition. Communications in Contemporary Mathematics, 24(05)
Huang, X., Song, Y., & Wang, F. (2022). Bismut formula for intrinsic/Lions derivatives of distribution dependent SDEs with singular coefficients. Discrete and Continuous Dynamical Systems, 42(9), 4597
Cheng, L., Thalmaier, A., & Wang, F. (2023). Some inequalities on Riemannian manifolds linking Entropy, Fisher information, Stein discrepancy and Wasserstein distance. Journal of Functional Analysis, 285(5), 109997
Wang, F. & Zhu, J.(2023). Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 59(1)
Wang, F. (2022). Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds. Journal of the European Mathematical Society, 25(9)
Huang, X., Song, Y., & Wang, F. (2022). Bismut formula for intrinsic/Lions derivatives of distribution dependent SDEs with singular coefficients. Discrete and Continuous Dynamical Systems, 42(9), 4597
Bogachev, V., Shaposhnikov, A., & Wang, F. (2022). Sobolev–Kantorovich inequalities under CD(0,∞) condition. Communications in Contemporary Mathematics, 24(05)
Wang, F. (2021). Wasserstein convergence rate for empirical measures on noncompact manifolds. Stochastic Processes and their Applications, 144(February 2022)
Wang, F. & Wu, J.(2021). On path independence of Girsanov transformation for stochastic differential equations. SCIENTIA SINICA Mathematica, 51(11), 1861-16.
Ren, P. & Wang, F.(2021). Donsker-Varadhan large deviations for path-distribution dependent SPDEs. Journal of Mathematical Analysis and Applications, 499(1), 125000
Wang, F. (2021). Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes. Journal of Functional Analysis, 280(11), 108998
Bao, J., Ren, P., & Wang, F. (2021). Bismut formula for Lions derivative of distribution-path dependent SDEs. Journal of Differential Equations, 282, 285-329.
Wang, F. (2020). Exponential Contraction in Wasserstein Distances for Diffusion Semigroups with Negative Curvature. Potential Analysis, 53(3), 1123-1144.
Bao, J., Wang, F., & Yuan, C. (2020). Limit theorems for additive functionals of path-dependent SDEs. Discrete & Continuous Dynamical Systems - A, 40(9), 5173-5188.
Ren, P. & Wang, F.(2020). Space-distribution PDEs for path independent additive functionals of McKean–Vlasov SDEs. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 23(03), 2050018
Wang, F. & Zhang, T.(2020). Talagrand Inequality on Free Path Space and Application to Stochastic Reaction Diffusion Equations. Acta Mathematicae Applicatae Sinica, English Series, 36(2), 253-261.
Huang, X., Röckner, M., & Wang, F. (2019). Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 39(6), 3017-3035.
Ren, P. & Wang, F.(2019). Bismut formula for Lions derivative of distribution dependent SDEs and applications. Journal of Differential Equations, 267(8), 4745-4777.
Grothaus, M. & Wang, F.(2019). Weak Poincaré inequalities for convergence rate of degenerate diffusion processes. The Annals of Probability, 47(5), 2930-2952.
Huang, X., Rockner, M., & Wang, F. (2019). Nonlinear Fokker--Planck equations for Probability Measures on Path Space and Path-Distribution Dependent SDEs. Discrete and Continuous Dynamical Systems, 39(6), 3017-3035.
Bao, J., Wang, F., & Yuan, C. (2018). Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory. Stochastic Processes and their Applications
Wang, F. (2018). Estimates for invariant probability measures of degenerate SPDEs with singular and path-dependent drifts. Probability Theory and Related Fields, 172(3-4), 1181-1214.
Wang, F. (2017). Poincare Inequality for Dirichlet Distributions and Infinite-Dimensional Generalizations. Latin American Journal of Probability and Mathematical Statistics, XIV, 361-380.
Röckner, M. & Wang, F.(2017). Closability of quadratic forms associated to invariant probability measures of SPDEs. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20(04), 1750023
Huang, X. & Wang, F.(2017). Functional SPDE with Multiplicative Noise and Dini Drift. Annales de la faculté des sciences de Toulouse Mathématiques, 26(2), 519-537.
Wang, F., Xiong, J., & Xu, L. (2016). Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations. Journal of Statistical Physics, 163(5), 1211-1234.
Wang, F. (2016). Gradient estimates and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift. Journal of Differential Equations, 260(3), 2792-2829.
Wang, F. & Zhang, T.(2014). Log-Harnack inequality for mild solutions of SPDEs with multiplicative noise. Stochastic Processes and their Applications, 124(3), 1261-1274.
Wang, F. (2012). DERIVATIVE FORMULA AND APPLICATIONS FOR HYPERDISSIPATIVE STOCHASTIC NAVIER–STOKES/BURGERS EQUATIONS. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 15(03), 1250020
Ouyang, S., Röckner, M., & Wang, F. (2012). Harnack Inequalities and Applications for Ornstein–Uhlenbeck Semigroups with Jump. Potential Analysis, 36(2), 301-315.
Wang, F. & Yuan, C.(2011). Harnack inequalities for functional SDEs with multiplicative noise and applications. Stochastic Processes and their Applications, 121(11), 2692-2710.
Thalmaier, A. & Wang, F.(2011). A stochastic approach to a priori estimates and Liouville theorems for harmonic maps. Bulletin des Sciences Mathématiques, 135(6-7), 816-843.
Wang, F. (2011). Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds. The Annals of Probability, 39(4), 1449-1467.
Gordina, M., Röckner, M., & Wang, F. (2011). Dimension-Independent Harnack Inequalities for Subordinated Semigroups. Potential Analysis, 34(3), 293-307.
Feng, S., Sun, W., Wang, F., & Fang, X. (2011). Functional inequalities for the two-parameter extension of the infinitely-many-neutral-alleles diffusion. Journal of Functional Analysis, 260(2), 399-413.
Wang, F. & Zhang, T.(2010). Gradient estimates for stochastic evolution equations with non-Lipschitz coefficients. Journal of Mathematical Analysis and Applications, 365(1), 1-11.
RÖCKNER, M. & Wang, F.(2010). LOG-HARNACK INEQUALITY FOR STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACES AND ITS CONSEQUENCES. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 13(01), 27-37.
Wang, F. & Wang, F.(2010). Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures. Science China Mathematics, 53(4), 895-904.
Wang, F. & WU, B.(2009). QUASI-REGULAR DIRICHLET FORMS ON FREE RIEMANNIAN PATH SPACES. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 12(02), 251-267.
Prato, G., Röckner, M., & Wang, F. (2009). Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. Journal of Functional Analysis, 257(4), 992-1017.
Arnaudon, M., Thalmaier, A., & Wang, F. (2009). Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stochastic Processes and their Applications, 119(10), 3653-3670.
Cattiaux, P., Guillin, A., Wang, F., & Liming, W. (2009). Lyapunov conditions for Super Poincaré inequalities. Journal of Functional Analysis, 256(6), 1821-1841.
Durran, R., Neate, A., Truman, A., & Wang, F. (2008). On the divine clockwork: The spectral gap for the correspondence limit of the Nelson diffusion generator for the atomic elliptic state. Journal of Mathematical Physics, 49(10), 102103
Dolbeault, J., Gentil, I., Guillin, A., & Wang, F. (2008). L q -Functional Inequalities and Weighted Porous Media Equations. Potential Analysis, 28(1), 35-59.
Wang, F. (2008). Entropy-cost inequalities for diffusion semigroups with curvature unbounded below. Proceedings of the American Mathematical Society, 136(09), 3331-3338.
Wang, F. (2008). From super Poincaré to weighted log-Sobolev and entropy-cost inequalities. Journal de Mathématiques Pures et Appliquées, 90(3), 270-285.
Liu, W. & Wang, F.(2008). Harnack inequality and strong Feller property for stochastic fast-diffusion equations. Journal of Mathematical Analysis and Applications, 342(1), 651-662.
Fang, S., Wang, F., & Wu, B. (2008). Transportation-cost inequality on path spaces with uniform distance. Stochastic Processes and their Applications, 118(12), 2181-2197.
Chen, X., Wang, F., & Wang, F. (2008). Construction of larger Riemannian metrics with bounded sectional curvatures and applications. Bulletin of the London Mathematical Society, 40(4), 659-663.
Wang, F. (2004). Gradient estimates of Dirichlet heat semigroups and application to isoperimetric inequalities. The Annals of Probability, 32(1A), 424-440.
Röckner, M. & Wang, F.(2001). Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups. Journal of Functional Analysis, 185(2), 564-603.
Wang, F., Wu, B., & Wang, F. (n.d.) Pointwise characterizations of curvature and second fundamental form on Riemannian manifolds. Science China Mathematics, 61(8), 1407-1420.